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Let Fx denote the free abelian group freely generated by the set X, 
and let R be a subset of Fx. With [R] denoting the subgroup of Fx 
generated by R, set 

G(X, R) = FX/[R], 

i.e., G(X, R) is that abelian group generated by X and subject only 
to the relations 

r = 0 all r £ R. 

If each of the elements in R involves only one generator in X, 
then G(X, R) is a direct sum of cyclic groups. On the other hand, if 
G is any abelian group, then GÇ=G(X, i?), where each element in R 
involves at most three generators in X; indeed this isomorphism re
sults if we take X = G and R equal to the set of all elements in F o of 
the form x+y~ z, where z = x+y in G. 

Our purpose here is to investigate the structure of the group 
G(X, R) in the intermediate case when each of the elements of R 
involves at most two generators, and G(X, R) is a torsion group. We 
can evidently restrict our attention to ^-groups, and in this case it 
is easily seen that G(X, R)=G(X', i?')> where each element in R' is 
of one of the forms 

pnx or pnx — y. 

This leads us to the following definition. Let X be a set, F be a sub
set of the set of ordered pairs (x, y) with x, yGX, wbea map of X to 
the nonnegative integers, and v be a map of V to the nonnegative 
integers. By G(X, V, u, v) we mean that abelian group generated by 
X and subject only to the relations 

pU(x)x s o all x G X, 
pvix,v)x ö y au fa y} g y. 

We say that an abelian p-group G is a T-group if G=G{X, V, u, v) 
for some (X, V, u, v). 
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