GENERALIZATION OF THE BIG PICARD THEOREM

BY MYUNG HE KWACK

Communicated by S. Smale, February 29, 1968

S. Kobayashi defined a pseudodistance d on a complex manifold in such a manner that it depends only on the complex structure of the complex manifold in question [7]. The definition of the pseudodistance can be extended word for word to a complex space (see [3] for definition of a complex space). Let D be the open unit disk in the complex plane C and ρ the Poincaré-Bergman metric of D. Given two points p and q of a complex space X, choose the following objects:

1. Points $p = p_0, p_1, \ldots, p_k = q$ of X.
2. Points $a_1, \ldots, a_k, b_1, \ldots, b_k$ of D and holomorphic mappings f_1, \ldots, f_k from D into X such that $f_i(a_i) = p_{i-1}$ and $f_i(b_i) = p_i$ for $i = 1, \ldots, k$. For each choice of points and mappings satisfying (1) and (2), consider the number $\rho(a_1, b_1) + \cdots + \rho(a_k, b_k)$. Let $d(p, q)$ be the infimum of the numbers obtained in this manner for all possible choices.

It is easy to verify that d is a pseudodistance on X. We shall call a complex space hyperbolic if the pseudodistance d_X is a distance. The concept of a hyperbolic space is a generalization of a Riemann surface of hyperbolic type in the sense that a Riemann surface of hyperbolic type is a hyperbolic space. A hyperbolic space (X, d_X) is said to be complete if for any point p of X and any positive number r, the closed ball of radius r around p is compact.

The purpose of this paper is to generalize the big Picard theorem which states that a holomorphic mapping from the punctured disk into the Riemann sphere $\mathbb{P}^1(C)$ minus three points can be extended to a holomorphic mapping from the whole disk into $\mathbb{P}^1(C)$. H. Huber extended this theorem to the case where the image space is a domain G of hyperbolic type in a Riemann surface R such that the closure of G in R is compact [4].

Theorem 1. Let f be a holomorphic mapping from the punctured disk D^* into a hyperbolic space X. Moreover, assume that the complex space X is compact. Then f can be extended to a holomorphic mapping from the whole disk into X.

\[1\] This note is an abstract of the author's Ph.D dissertation written under the guidance of Professor S. Kobayashi.