CHARACTERIZATIONS OF THE ESSENTIAL SPECTRUM OF F. E. BROWDER

BY DAVID LAY

Communicated by Felix Browder, August 16, 1967

Let T be a densely defined closed linear operator on a Banach space X. F. E. Browder [1] has defined the essential spectrum of T, ess(T), to be the set of complex numbers λ such that at least one of the following conditions is satisfied:

- (i) The range $\Re(\lambda T)$ of the operator λT is not closed in X;
- (ii) $\bigcup_{k\geq 0} \mathfrak{N}[(\lambda-T)^k]$ is of infinite dimension, $(\mathfrak{N}(S))$ being the null space of the operator S);
 - (iii) The point λ is a limit point of the spectrum of T.

In [7], M. Schechter discusses two other sets of complex numbers, $\sigma_{ew}(T)$ and $\sigma_{em}(T)$, which have also been called the essential spectrum of T (cf. [10]). He characterizes $\sigma_{em}(T)$ as the largest subset of the spectrum of T which remains invariant under compact perturbations of T. Although $\sigma_{em}(T)$ is in general a proper subset of $\operatorname{ess}(T)$, Schechter gives conditions which guarantee that $\operatorname{ess}(T)$ will remain invariant under compact (and certain other) perturbations of T. The proofs of these results usually reduce to showing that $\sigma_{em}(T) = \operatorname{ess}(T)$.

In this paper we replace Schechter's conditions on T by a condition on the perturbing operator and show that ess(T) is invariant under compact (and certain other) perturbations of T, provided the perturbing operators commute with T. We shall say that a linear operator C commutes with T if (i) the domain of C, $\mathfrak{D}(C)$, contains the domain of T, (ii) $Cx \in \mathfrak{D}(T)$ whenever $x \in \mathfrak{D}(T)$, (iii) and TCx = CTx for $x \in \mathfrak{D}(T^2)$.

Following the notation and terminology of [9], we denote the dimension of the null space or nullity of an operator S by n(S) and the codimension of the range or defect of S by d(S). The ascent of S, $\alpha(S)$, is the smallest integer p such that $\mathfrak{R}(S^p) = \mathfrak{R}(S^{p+1})$, and the descent of S, $\delta(S)$, is the smallest integer p such that $\mathfrak{R}(S^q) = \mathfrak{R}(S^{q+1})$. (It may happen that $\alpha(S) = \infty$ or $\delta(S) = \infty$.) Suppose that λ_0 is a pole of order p of the resolvent operator $(\lambda - T)^{-1}$ and let E be the spectral projection corresponding to the spectral set $\{\lambda_0\}$. The range of E is the null space of $(\lambda_0 - T)^p$ and the dimension of this space is called the rank of the pole λ_0 .

THEOREM 1. Let T be a densely defined closed linear operator on a