STRUCTURE OF CERTAIN INDUCED REPRESENTATIONS OF COMPLEX SEMISIMPLE LIE ALGEBRAS¹

BY DAYA-NAND VERMA²

Communicated by C. W. Curtis, June 14, 1967

Let \mathfrak{L} be a split semisimple Lie algebra over a field Φ of characteristic zero and $\mathfrak{L} = \mathfrak{K} + \sum_{\alpha \in \Delta} \mathfrak{L}_{\alpha}$ be the rootspace decomposition of \mathfrak{L} relative to a splitting Cartan subalgebra \mathfrak{K} , where the subset Δ of \mathfrak{K}^* is the corresponding root-system. Fix a simple system of roots $\{\alpha_1, \alpha_2, \cdots, \alpha_l\}$, for which the positive (resp. negative) roots are denoted by Δ_+ (resp. Δ_-). For $\alpha \in \Delta$ let R_{α} be the Weyl reflection sending α into $-\alpha$ and fixing the elements of \mathfrak{K}^* orthogonal to α with respect to the inverse Killing form \langle , \rangle . It is given explicitly by $\lambda R_{\alpha} = \lambda - \lambda (h_{\alpha}) \alpha$ where $h_{\alpha} \in \mathfrak{K}$ is defined by requiring $\lambda (h_{\alpha})$ $= 2\langle \alpha, \alpha \rangle^{-1} \langle \lambda, \alpha \rangle$ for all $\lambda \in \mathfrak{K}^*$. Denote the group generated by $\{R_{\alpha} | \alpha \in \Delta\}$ by W. We abbreviate R_{α_i} and h_{α_i} by R_i and h_i respectively. The "simple" reflections R_1, R_2, \cdots, R_l are Coxeter generators of the Weyl group W. Let \mathfrak{U} be the universal enveloping algebra of \mathfrak{L} , and \mathfrak{U}_+ (resp. \mathfrak{U}_-) the subalgebra with identity 1 generated by $\mathfrak{L}_+ = \sum_{\alpha \in \Delta_+} \mathfrak{L}_{\alpha}$ (resp. $\mathfrak{L}_- = \sum_{\alpha \in \Delta_-} \mathfrak{L}_{\alpha}$).

It is an established fact that the notions of \mathcal{L} -module and \mathfrak{U} -module are interchangeable. Here, and throughout, the word "module" is an abbreviation for the word "right-module." Our object in this paper is to study the structure of the \mathcal{L} -module $\mathfrak{B}_{\Lambda} = \mathfrak{U}/\mathfrak{g}_{\Lambda}$ for arbitrary $\Lambda \in \mathfrak{K}^*$, where \mathfrak{U} is regarded as a module under right-multiplication and \mathfrak{g}_{Λ} is the right-ideal of \mathfrak{U} (i.e., submodule of \mathfrak{U}) generated by

$$\mathfrak{L}_+ \cup \{h - \Lambda(h) \cdot 1 \mid h \in \mathfrak{K}\}.$$

It is known (cf. Cartier [4, p. 17–04]) that \mathfrak{B}_{Λ} has a unique maximal proper submodule and hence a unique irreducible quotient-module which we denote by \mathfrak{M}_{Λ} . \mathfrak{B}_{Λ} "admits a complete weightspace decomposition" in the sense that it is the direct sum of its weightspaces $\mathfrak{B}_{\Lambda(\lambda)}$, where for any \mathfrak{L} -module \mathfrak{M} and any $\lambda \in \mathfrak{K}^*$ the weightspace $\mathfrak{M}_{(\lambda)}$ is defined by

$$\mathfrak{M}_{(\lambda)} = \left\{ x \in \mathfrak{M} \mid xh = \lambda(h)x \text{ for all } h \in \mathfrak{K} \right\};$$

¹ Announcement of the results in the author's Ph.D. dissertation, Yale University, 1966; supported in part by the NFS grant no. GP-4017.

² The author is presently at the Institute for Advanced Study, Princeton, N. J.