EXTENSION OF VALUATION THEORY

BY MERLE E. MANIS

Communicated by David A. Buchsbaum, May 16, 1967

By a valuation on a commutative ring R with 1 we mean a pair (v, Γ) where Γ is an ordered (multiplicative) group with zero adjoined and v is a map from R onto Γ satisfying

- (1) v(xy) = v(x)v(y) for all $x, y \in R$,
- (2) $v(x+y) \le \max \{v(x), v(y)\}$ for all $x, y \in R$.

This generalizes the field concept; the insistence on "onto" is what allows us to generalize the main field theorems.

PROPOSITION 1. Let A be a subring of a ring R, P a prime ideal of A. Then the following are equivalent:

- (1) For each subring B of R and prime ideal Q of B with $A \subset B$, $Q \cap A = P$, one has A = B.
 - (2) For $x \in R \setminus A$ there exists a $y \in P$ with $xy \in A \setminus P$.
 - (3) There is a valuation (v, Γ) on R with

$$A = \{x \in R \mid v(x) \le 1\}, \quad P = \{x \in R \mid v(x) < 1\}.$$

We call pairs (A, P) satisfying the three equivalent conditions valuation pairs.

PROPOSITION 2. The valuations (v, Γ) and (w, Λ) determine the same valuation pair (A, P) if and only if there is an order isomorphism ϕ of Γ onto Λ such that $w = \phi \circ v$.

Let the valuation (v, Γ) determine the valuation pair (A, P). Then an ideal $\mathfrak A$ of A is called v-closed if $x \in \mathfrak A$, $y \in R$ and $v(y) \leq v(x)$ implies $y \in \mathfrak A$.

PROPOSITION 3. The v-closed ideals of A are linearly ordered by inclusion. The v-closed prime ideals are in 1-1 correspondence with the isolated subgroups of Γ . If $\phi: \Gamma \rightarrow \Gamma/\Sigma$ is the natural map with Σ an isolated subgroup of Γ , then the v-closed prime ideal corresponding to Σ is the ideal of the valuation pair determined by the valuation $(\phi \circ v, \Gamma/\Sigma)$.

Independence and dominance of valuations are defined as in [5] and the "same" computational lemmas are obtained.

Let R be a ring extension of a ring K, (v_0, Γ_0) a valuation on K. By an extension of (v_0, Γ_0) to R we mean a valuation (v, Γ) on R and an order isomorphism ϕ of Γ_0 into Γ such that $v(x) = \phi \circ v_0(x)$ for all $x \in K$.