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1. Introduction and description of method. The known discrete 
variable methods for the solutions of differential equations (see [l]) 
furnish the approximate solutions as discrete tabular values at usu­
ally equidistant values of the independent variable. The object of 
this paper is to search for approximate solutions in the form of a 
spline function S(x)y [4], of degree m ( w ^ 2 ) and class Cm~l. This 
approach was suggested to the authors by I. J. Schoenberg [3]. 

Let the differential equation be 

(1) ƒ = ƒ0 ,30 , 0 ^ ^ , 

about which we assume the following. If r = {(x, y) | 0 Soc S b}, then 
we assume that ƒ(#, j i J g O " 2 in T and that it satisfies the Lipschitz 
condition 

(2) | ƒ(*, y) - ƒ(*, y*)\ ^L\y-y*\ HO^x^b. 

If tn^3 then (2) is equivalent to the boundedness of df/dy in T. 
Our construction of the approximate solution S(x)—Sm(x) is as 

follows. Let y(x) be the solution of (1) determined by the initial value 
y(0)=yo. Let n be an integer >mt h = b/n and let S(x) (O^x^b) 
be a spline function of degree tn, class Cm~l and having its knots at 
the points x — h, 2h, • • • , (n — l)h. 

We define the first component of S(pc) =Sm(x) by 

1 
S(x) = y(0) + / (O)* + • • • + y<—D(0)*»-i 

(m — 1) ! 
(3) \ 

H a0x
m (0 ^ x ^ h) 

ml 
with the last coefficient a0 as yet undetermined. We now determine 
<z0 by requiring that S(x) should satisfy (1) for x = h. This gives the 
equation 

(4) S'(k)=f(h,S(k)) 

1 Supported in part by the National Science Foundation under Grant GP-6070. 

438 


