## A COMMUTATIVE SEMISIMPLE ANNIHILATOR BANACH ALGEBRA WHICH IS NOT DUAL

BY B. E. JOHNSON

Communicated by E. Hewitt, December 7, 1966

Barnes [1] has constructed an example of a commutative semisimple normed annihilator algebra which is not a dual algebra. His example is not complete and when completed acquires a nonzero radical. In this paper we construct an example which is complete. The theory of annihilator algebras is developed e.g. in [2].

We put  $\alpha_i = (1 + (1+i)^{-1/2})^{-2}$  for  $i \ge 1$  and denote by  $A_0$  the algebra of doubly infinite sequences a with  $a_i = 0$  for all but a finite number of values of i, with coordinatewise addition and multiplication. We define a norm on  $A_0$  by

$$||a|| = 3 \left( \sum_{n < 0} |a_n|^2 \right)^{1/2} + 3 \sup_{n > 0} |a_n \alpha_n^{-1} - \sum_{i = -n}^0 a_i|.$$

This is easily seen to be a linear space norm on  $A_0$  and we have that

(i) 
$$\left( \sum_{n \le 0} |a_n b_n|^2 \right)^{1/2} \le \left( \sum_{n \le 0} |a_n|^2 \right)^{1/2} \left( \sum_{n \le 0} |b_n|^2 \right)^{1/2}$$
 
$$\le \frac{1}{9} ||a|| ||b||;$$

(ii) if n > 0,

$$\frac{1}{3} ||a|| \ge |a_n \alpha_n^{-1} - \sum_{j=-n}^0 a_j|$$

$$\ge |a_n| \alpha_n^{-1} - (n+1)^{1/2} \frac{1}{3} ||a||$$

so that

$$|a_n|\alpha_n^{-1} \le \frac{1}{3}(1+(n+1)^{1/2})||a||$$

and

$$\begin{vmatrix} a_n b_n \alpha_n^{-1} \end{vmatrix} \leq \frac{1}{9} \alpha_n (1 + (n+1)^{1/2})^2 ||a|| ||b||$$
  
=  $\frac{1}{9} ||a|| ||b||;$ 

(iii) 
$$\left| \sum_{j=-n}^{0} a_{j} b_{j} \right| \leq \left( \sum_{j=-n}^{0} \left| a_{j} \right|^{2} \right)^{1/2} \left( \sum_{j=-n}^{0} \left| b_{j} \right|^{2} \right)^{1/2} \leq \frac{1}{9} ||a|| ||b||.$$