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Barnes [1] has constructed an example of a commutative semi-
simple normed annihilator algebra which is not a dual algebra. His
example is not complete and when completed acquires a nonzero
radical. In this paper we construct an example which is complete.
The theory of annihilator algebras is developed e.g. in [2].

We put a;= (14 (1+2) Y2)~2 for =1 and denote by 4, the algebra
of doubly infinite sequences ¢ with ;=0 for all but a finite number
of values of 7, with coordinatewise addition and multiplication. We
define a norm on 4, by

1/2
ol =3( S lanls) " + 35w
n>0

ns0

—1 0
ApOlp, — Z a;

j=—n

.

This is easily seen to be a linear space norm on 4, and we have that
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