ON THE ERGODIC THEOREM FOR POSITIVE OPERATORS¹

BY LOUIS SUCHESTON

Communicated by M. Loève, December 22, 1966

Let (X, \mathfrak{A}, μ) be a σ -finite measure space and let T be a positive linear operator on $L_1(X, \mathfrak{A}, \mu)$. The ratio ergodic theorem of Chacon-Ornstein (see [3], [7], [2]) assumes that $|T|_1$, the L_1 norm of T, is less than or equal to one. Here we discuss the behavior of the ratio under the weaker boundedness assumption (b_h) . All sets and functions introduced below are assumed measurable. All relations are assumed to hold modulo sets of μ -measure zero. L_1^+ is the class of nonnegative not identically vanishing elements of L_1 ; similar conventions apply to other function spaces. $L_1(A)$ is the class of functions f with supp f (support of f), contained in A and $\int |f| < \infty$. $T^P g$ is the function $g+Tg+T^2g+\cdots$. The function $f \cdot \mathbf{1}_A$ is sometimes written f_A . A set A is called closed on a set B if $f \in L_1^+(A)$ implies $\mathbf{1}_B \cdot Tf$ $\in L_1(A)$. A set closed on X is called closed.

THEOREM 1. Let h be a fixed function in L_{∞}^+ and assume that T satisfies the following condition:

(b_h)
$$\sup_{n} \int T^{n} f \cdot h < \infty$$
 for each $f \in L_{1}^{+}$.

Then the space X uniquely decomposes into sets Y^h and Z^h with the following properties. The set Z^h is closed and, if $f \in L_1(Z^h)$, then

(1)
$$\gamma^*(f) \stackrel{\text{def}}{=} \lim_n \left(\sup_j n^{-1} \sum_{i=0}^{n-1} \int (T^{i+j} |f| \cdot h) \right) = 0.$$

If $f \in L_1^+(Y^h)$, then $\gamma^*(f) > 0$.

THEOREM 2. Assume (b_h). The set Y^h decomposes into the conservative part YC^h and the dissipative part YD^h : for each $f \in L_1^+$, $T^P f = 0$ or ∞ on YC^h ; $T^P f < \infty$ on YD^h . The subsets of YC^h closed on Y^h form a σ -field, say C^h , and $YC^h \in C^h$. If $X \neq Z^h$, then the equation

(2)
$$e \in L^+_{\infty}$$
, supp $e = Y^h$, $T^*e = e$

¹ Research supported in part by the National Science Foundation Grant GP-1458. Complete proofs, and some examples will appear in Z. Wahrscheinlichkeitstheorie.