INNER FUNCTIONS IN POLYDISCS¹

BY WALTER RUDIN

Communicated by A. Zygmund, November 21, 1966

For $N = 2, 3, 4, \cdots$ the polydisc U^N consists of all $z = (z_1, \cdots, z_N)$ in C^N (the space of N complex variables) such that $|z_j| < 1$ for j = 1, \cdots , N. The class of all bounded holomorphic functions in U^N is denoted by $H^{\infty}(U^N)$. If $f \in H^{\infty}(U^N)$ it is well known that the radial limits

(1)
$$f^*(z) = \lim_{r \to 1} f(rz)$$

exist for almost all z in the distinguished boundary T^N of U^N . Here $rz = (rz_1, \cdots, rz_N)$.

An inner function in U^N is, by definition, a function $g \in H^{\infty}(U^N)$ such that $|g^*(z)| = 1$ for almost all $z \in T^N$.

The present note contains partial answers to questions such as the following: Is every $f \in H^{\infty}(U^N)$ (other than $f \equiv 0$) a product f = gh where g is inner and both h and 1/h are holomorphic in U^N ? (In this case we say that f and g have the same zeros in U^N .) If not, what are some sufficient conditions on f which guarantee the existence of such a factorization? If f does have the same zeros as some inner function g, does it follow that g can be chosen so that $f/g \in H^{\infty}(U^N)$?

A special role is played by those inner functions which (for lack of a better name) I propose to call good: An inner function g is good if

(2)
$$\lim_{r \to 1} \int_{T^N} \log |g(rz)| dm(z) = 0.$$

Here dm denotes the Haar measure of T^N .

To see some examples, consider these four classes of inner functions in U^{N} :

(A) Those which have continuous extensions to the closure of U^{N} .

(B) Rational inner functions.

(C) Finite or infinite (convergent) products of rational inner functions.

(D) Good inner functions.

In one variable, (A) = (B) and (C) = (D), since the good inner func-

¹Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. 1160-66, and by the Wisconsin Alumni Research Foundation.