ON REGULAR NEIGHBORHOODS OF SPHERES

BY LAWRENCE S. HUSCH¹

Communicated by J. Milnor, April 5, 1966

Consider the following two conjectures:

C(n): (The combinatorial Schoenflies conjecture.) A combinatorial (n-1)-sphere on a combinatorial *n*-sphere decomposes the latter into two combinatorial *n*-cells.

D(n): Let W^n be an orientable combinatorial manifold without boundary and let M^{n-1} be a closed orientable combinatorial manifold imbedded piecewise linearly in W^n . Let U be a regular neighborhood of M^{n-1} in W^n . Then there exists a piecewise linear homeomorphism $h: M^{n-1} \times [-1; 1] \rightarrow U$ such that

$$h(x, 0) = x,$$

$$(2) h ext{ is onto.}$$

It is easily seen that D(n) implies C(n) for all $n \neq 4$ by using the Hauptvermutung for combinatorial cells and spheres [10]. In [8], Noguchi shows that $C(1), C(2), \dots, C(n)$ imply D(n+1). By using the fact that a compact component of the boundary of a combinatorial manifold is combinatorially collared [9], [11], it is easily shown that C(n) implies D(n+1). However it is possible to prove a weaker version of D(n+1) without the use of C(n) for the special case when W, M are spheres.

THEOREM. Let $\sum_{n=1}^{n} (n \neq 4)$ be a combinatorial sphere embedded piecewise linearly in the combinatorial sphere S^{n+1} . Let U be a regular neighborhood of $\sum_{n=1}^{n} in S^{n+1}$. Then there exists a piecewise linear homeomorphism $h: \sum_{n=1}^{n} \times [-1; 1] \rightarrow S^{n+1}$ such that $h(\sum_{n=1}^{n} \times [-1; 1]) = U$.

PROOF. (For definitions of terms used see [11].) Since C(i), i = 1, 2, 3, is valid [1], [6], it follows from the remarks above that the theorem is true for n < 4. Suppose n > 4.

Since $\sum_{i=1}^{n}$ is a deformation retract of U, the *i*th integral homology groups of $\sum_{i=1}^{n}$ and U are isomorphic for all *i*. It follows then from Alexander duality and the unicoherence of the sphere that the closure of $S^{n+1}-U$, $Cl(S^{n+1}-U)$, is the union of two connected closed sets,

¹ The contents of this paper form a part of the author's dissertation submitted as a partial requirement for the Ph.D degree at Florida State University under the direction of Professor James J. Andrews. Research was supported by a National Science Foundation Cooperative Graduate Fellowship.