DIMENSION OF METRIC SPACES AND HILBERT'S PROBLEM 13¹

BY PHILLIP A. OSTRAND

Communicated by R. P. Boas, March 10, 1965

In 1957 A. N. Kolmogorov [1] and V. I. Arnol'd [2] obtained the following result (answering Hilbert's conjecture in the negative):

THEOREM. For every integer $n \ge 2$ there exist continuous real functions Ψ^{pq} , for $p=1, 2, \cdots, n$ and $q=1, 2, \cdots, 2n+1$, defined on the unit interval $E^1 = [0, 1]$, such that every continuous real function f, defined on the n-dimensional unit cube E^n , is representable in the form

$$f(x_1, \cdots, x_n) = \sum_{q=1}^{2n+1} \chi_q \bigg[\sum_{p=1}^n \psi^{pq}(x_p) \bigg],$$

where the functions χ_q are real and continuous.

The proof of the theorem relies on two properties of E^1 , namely, E^1 is compact and of dimension 1. (By dimension we shall always mean covering dimension.) This paper generalizes the work of Kolmogorov and Arnol'd to obtain the following result:

THEOREM 2. For $p = 1, 2, \dots, m$ let X^p be a compact metric space of finite dimension dp, and let $n = \sum_{p=1}^{n} d_p$. There exist continuous functions $\psi^{pq}: X^p \to [0, 1]$, for $p = 1, \dots, m$ and $q = 1, 2, \dots, 2n+1$, such that every continuous real function f defined on $\prod_{p=1}^{m} X^p$ is representable in the form

$$f(x_1, \cdots, x_m) = \sum_{q=1}^{2n+1} \chi_q \bigg[\sum_{p=1}^m \psi^{pq}(x_p) \bigg],$$

where the functions χ_q are real and continuous.

The proof of Theorem 2 makes use of the following new characterization of dimension of metric spaces which is of interest in itself.

THEOREM 1. A metric space X is of dimension $\leq n$ if and only if for each open cover C of X and each integer $k \geq n+1$ there exist k discrete families of open sets U_1, \dots, U_k such that the union of any n+1 of the U_i is a cover of X which refines C.

¹ This research was partially supported by a National Science Foundation Fellowship.