MULTIPLIERS OF FOURIER TRANSFORM IN A HALF-SPACE¹

BY E. SHAMIR

Communicated by F. Browder, September 24, 1964

1. Let (x, y) denote points in \mathbb{R}^n where $x = (x_1, \dots, x_{n-1}), y = x_n$. Points of the dual space are denoted by (ξ, η) . Let Y_+ be the characteristic function of the half space $\mathbb{R}^n_+ = \{(x, y) \mid y \ge 0\}$. Let $M(\xi, \eta)$ be an $m \times m$ matrix-valued function whose entries are homogeneous functions:

$$M_{ij}(\lambda \xi, \lambda \eta) = M_{ij}(\xi, \eta), \quad \lambda > 0, 1 \leq i, j \leq m.$$

Assume further that $M(\xi, \eta)$ is continuous and nonsingular for $(\xi, \eta) \neq 0$. Consider the bounded operator M in the space $(L^2(R_+^n))^m$ (with the natural norm denoted by $\|\cdot\|$):

(1)
$$Mu = Y_{+}\mathfrak{F}^{-1}[M(\xi,\eta)(\mathfrak{F}u)(\xi,\eta)], \quad u \in (L^{2}(\mathbb{R}^{n}_{+}))^{m},$$

where \mathfrak{F} (\mathfrak{F}^{-1}) denotes the direct (inverse) Fourier transform with respect to all variables. \mathfrak{F}_{ν} (\mathfrak{F}_{x}) will denote the transform with respect to y or x alone. The one-dimensional operator M_{ξ} is similarly defined in $(L^{2}(R_{+}^{1}))^{m}$ with the multiplier $M(\xi, \eta)$, ξ fixed:

(2)
$$\mathbf{M}_{\xi V} = Y_{+} \mathfrak{F}_{v}^{-1} [M(\xi, \eta)(\mathfrak{F}_{v} v)(\eta)].$$

Our main results in this note are the following lemma and theorem.

LEMMA. The estimate

(3)
$$||u|| \leq C||Mu||, \quad u \in (L^2(\mathbb{R}^n_+))^m$$

holds if and only if for all $|\xi| = 1$ (uniformly)

(4)
$$||v|| \leq C||M_{\xi v}||, \quad v \in (L^2(R^1_+))^m.$$

For the scalar case (m=1), we have

THEOREM. Let $M(\xi, \eta)$ be a homogeneous function continuous and nonvanishing for $(\xi, \eta) \neq 0$. Let

(5)
$$-\frac{1}{2\pi}\int_{-\infty}^{\infty}d_{\eta}\arg M(\xi,\eta)=k+\theta, \quad k \text{ integer, } -1/2<\theta\leq 1/2.$$

¹ The work reported here was supported by the Air Force Office of Scientific Research under Grant No. AFOSR 553-64.