THE RECURSIVE EQUIVALENCE TYPE OF A CLASS OF SETS¹

BY J. C. E. DEKKER

Communicated by P. R. Halmos, February 28, 1964

1. Introduction. Let us consider non-negative integers (numbers), collections of numbers (sets) and collections of sets (classes). The letters ϵ and o stand for the set of all numbers and the empty set of numbers respectively. We write \subset for inclusion, proper or improper. A mapping from a subset of ϵ into ϵ is called a *function*; if f is a function, we denote its domain and its range by δf and ρf respectively. Let a class of mutually disjoint nonempty sets be called an *md-class*; such a class is therefore countable, i.e., finite or denumerable. We recall that the recursive equivalence type (abbreviated: RET) of a set α , denoted by Req(α), is defined [1, p. 69] as the class of all sets which are recursively equivalent to α . We wish to consider the problem: "How can we define the RET of an *md-class in a natural manner*?" Throughout this note S stands for an md-class and σ for the union of all sets in S; for every $x \in \sigma$ we denote the unique set α such that $x \in \alpha \in S$ by α_x .

DEFINITIONS. A set γ is a *choice set* of S, if

(1) $\gamma \subset \sigma$,

(2) γ has exactly one element in common with each set in S.

The set γ is a good choice set of S (abbreviated: gc-set), if it also satisfies

(3) there exists a partial recursive function p(x) such that $\sigma \subset \delta p$ and $(\forall x) [x \in \sigma \Rightarrow p(x) \in \gamma \cdot \alpha_x]$.

Consider the special case that the md-class S is a finite class of finite sets. Then

(a) every choice set of S is a good choice set,

(b) every two choice sets of S are recursively equivalent,

(c) every two good choice sets of S are recursively equivalent.

If the md-class S is infinite, (a) and (b) need no longer be true. For let S contain infinitely many sets of cardinality ≥ 2 , e.g., $S = ((0, 1), (2, 3), (4, 5), \cdots)$. Then S has c choice sets. Every good choice set of S has the form $p(\sigma)$ for some partial recursive function p(x), hence S has at most \aleph_0 good choice sets and (a) is false. Every nonzero RET contains exactly \aleph_0 sets; the c choice sets of S can therefore not all be recursively equivalent and (b) is false. On the

¹ This paper was written while the author was supported by a grant from the Rutgers Research Council.