SPLINE INTERPOLATION AND BEST OUADRATURE FORMULAE

BY I. J. SCHOENBERG

Communicated by Felix Browder, October 9, 1963

1. The spline interpolation formula. A spline function S(x), of degree $k(\ge 0)$, having the knots

$$(1) x_0 < x_1 < \cdots < x_n,$$

is by definition a function of the class C^{k-1} which reduces to a polynomial of degree not exceeding k in each of the n+2 intervals in which the points (1) divide the real axis. The function S(x) is seen to depend linearly on n+k+1 parameters. In [5, Theorem 2, p. 258] are given the precise conditions under which we can interpolate uniquely by S(x) arbitrarily given ordinates at n+k+1 points on the real axis.

For the remainder of this note we set k=2m-1 $(1 \le m \le n)$ and single out from this family of spline functions the

CLASS Σ_m : The class of spline functions S(x) of degree 2m-1, knots (1), and the additional property that S(x) reduces to polynomials of degree not exceeding m-1 in each of the ranges $(-\infty, x_0)$ and $(x_n, +\infty)$.

The restriction that $m \le n$ is essential, otherwise Σ_m reduces to π_{m-1} (here and below π_k denotes a generic polynomial of degree $\le k$, as well as their class). In a paper [1] soon to appear C. de Boor observes that [5, Theorem 2] implies the following interesting

THEOREM 1 (C. DE BOOR). Given m ($1 \le m \le n$), the points (1) and also arbitrary reals y; ($i = 0, \dots, n$), then there is a unique S(x) such that

(2)
$$S(x_i) = y_i \qquad (i = 0, \dots, n).$$

Let us now consider this interpolating spline function S(x) in a given finite interval $a \le x \le b$ containing the points (1). Its particular interest is due to the following

THEOREM 2 (C. DE BOOR). Let $f(x) \in C^{m-1}[a, b]$, having an absolutely continuous $f^{(m-1)}(x)$, and be such that

$$f(x_i) = y_i \qquad (i = 0, \dots, n).$$

If S(x) denotes the interpolating spline function of Theorem 1 then

$$\int_{a}^{b} (f^{(m)}(x))^{2} dx \ge \int_{a}^{b} (S^{(m)}(x))^{2} dx$$