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Particular solutions of nonlinear differential equations have been 
used successfully to achieve analytic simplification of systems of linear 
differential equations [7; 8]. In this note we will show that similar 
results are possible for systems of linear difference equations. To the 
author's knowledge, this is the first time this technique has been em­
ployed for difference equations. 

We are concerned with the system of linear difference equations 

(1) y{x + 1) = xliA(x)y(x)) 

where y is a vector with n components, ix is an integer, and A (x) is 
an n by n matrix with elements analytic in a neighborhood of x = oo : 

00 

^0*0 =* £ A8x~*, \x\ > p, AojéQ. 

The most effective manner for determining the solutions formally3 

is to reduce the difference equation (1) into k systems of the same 
type and of lower order by a formal transformation4 of the form 

(2) y(x) = T(x)z(x) 

where 
00 

T(x) = YL T9x~9 (formally), det. To ̂  0. 
«»o 

More precisely speaking, let the resulting equation be 

z(x + 1) = C(x)z(x) 

where Tix) has been constructed so that C(x) has the block diagonal 
form 

C(x) « ( d W , C2(*), • • • , C*0))> 
with 

00 

d(x) = 0* 2 Co*-*, do = \ili + Ni. 
y-o 
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