
1963] JORDAN ALGEBRAS 791 

i = 1, • • • , c, and c ^ 2 , t\ or r 2 = 1. But this implies that A is a per­
mutation matrix. 

CONJECTURE. If A = (a»y) is an n-square (0, l)-matrix then 

(3) #(ii) ^ f i M17" 

wiJft equality if and only if there exist permutation matrices P and Q 
such that PAQ is a direct sum of matrices all of whose entries are 1. 

The conjecture is known to be true for all (0, 1)-matrices whose 
row sums do not exceed 6. 
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In this note, we outline a method which reduces the determination 
of the collineation group of a division ring plane to the solution of 
certain algebraic problems—in particular, to the question of when 
two rings of a certain type are isomorphic. This method is then ap­
plied to planes coordinatized by finite dimensional Jordan algebras of 
characteristic 5^2, 3, and their collineation groups are determined. 
Complete arguments and detailed proofs will appear elsewhere. 

1. Let 9? be a nonalternative division ring, let 7r(9î) be the projec­
tive plane coordinatized by 9Î, and let G(T) be the collineation group 
of 7T. Then (see [l ]) G(w) possesses a solvable normal subgroup whose 
structure is known, the elementary subgroup, such that the factor 
group is isomorphic with the group of autotopisms of 9Î, .4(9$). Also, 
i4(9î) «Jî(7r), where H(if) consists of those elements of G(w) which 
leave fixed the points (00), (0), and (0, 0). (See [2], Chapter 20 for 
the coordinatization of projective planes.) 

Let JB(9Î) be the automorphism group of 9Î. Then J3(9t) ^Hi(ir)t 

where iïi(7r) consists of those elements of iïi(7r) which leave the point 


