DIFFERENTIAL INQUUALITIES

BY RAYMOND M. REDHEFFER¹

Communicated by Lipman Bers, August 14, 1962

Let *B* denote a bounded region in Euclidean *n*-space, with boundary ∂B and closure \overline{B} . We write $P = x = (x_1, x_2, \dots, x_n) \in \overline{B}$, $u_i = \partial u/\partial x_i, u_{ij} = \partial^2 u/\partial x_i \partial x_j$, and similarly for *v*, *c* and *y*. The normal derivative u_v is understood in the sense of Walter, namely:

$$u_{\nu}(P_0) = \limsup \left[u(P_k) - u(P_0) \right] \Big| P_k - P_0 \Big|^{-1}$$

where $P_k \in B$, $P_0 \in \partial B$, and $P_k \rightarrow P_0$ in such a way that

$$(P_k - P_0) | P_k - P_0 |^{-1}$$

tends to a fixed vector, v. We have u = u(x), v = v(x), and

$$Tu = \phi(x) - f(x, u, u_i, u_{ij}), \qquad x \in B,$$

$$Ru = \Re(x) - k(x, u, u_v), \qquad x \in \partial B.$$

Independent variables are denoted by the letter s. The letter p means "+" or "-," and has the same meaning in hypothesis and conclusion. We suppose ϵ^p and δ^p to be nonnegative constants. The statement " $f(x, v, v_i, v_{ij} \uparrow)$ is monotone" means that

$$p[f(x, v, v_i, v_{ij}) - f(x, v, v_i, s_{ij})] \geq 0$$

when the matrix $p[(v_{ij}) - (s_{ij})] \ge 0$, $p = \pm$. Other assertions of monotony are interpreted similarly. We assume $u \in C^{(2)}$, $v \in C^{(2)}$ in B and $u \in C$, $v \in C$ in \overline{B} , although discontinuities can be allowed as in [2].

It is convenient to write $v' = (v, v_i, v_{ij})$, a vector of $1+n+n^2$ components, and similarly for u, s, and y. Also $f' = (f_u, f_{ui}, f_{uij})$ with argument (x, v') or (x, s'), as the case may be. Similarly, $k' = (k_u, k_{u_y})$. The statement "f' is continuous in the neighborhood of v" means that there is an h > 0 such that f'(x, s') is continuous for |s'-v'| < h. Other statements of this kind are understood similarly.

THEOREM I. Let $k(x, u \downarrow, u_v)$ be strictly monotone, let $k(x, v, v_v \uparrow)$ be monotone, and let f' be continuous in the neighborhood of v. Suppose further:

(i) $f(x, u \downarrow, u_i, u_{ij})$ is monotone, and $f(x, s, s_i, s_{ij} \uparrow)$ is monotone in the neighborhood of v.

¹ Fulbright Research Scholar at the University of Hamburg.