PRODUCTS OF PSEUDO CELLS

BY C. H. EDWARDS, JR.¹

Communicated by Deane Montgomery, July 30, 1962

By a *pseudo n-cell* is meant a contractible compact combinatorial *n*-manifold with boundary (whose boundary is not necessarily an (n-1)-sphere). Poenaru [6] and Mazur [5] gave the first examples of pseudo 4-cells which are not topological 4-cells, and Curtis [4] has shown that, for each $n \ge 4$, there exists a pseudo *n*-cell which is not a topological *n*-cell because its boundary fails to be simply connected. By a *homotopy n-cell* is meant a pseudo *n*-cell whose boundary is the (n-1)-sphere S^{n-1} . It follows from the generalized Poincaré conjecture and the generalized Schoenflies theorem that a homotopy *n*-cell is a topological *n*-cell if $n \ge 5$ [4].

The following consequence of theorems of Brown and Stallings generalizes results of Curtis [4], who has shown that the cartesian product of a pseudo *n*-cell and an interval is the topological (n+1)-cell I^{n+1} if $n \ge 5$, and Andrews [1], who has shown that the product of a homotopy 3-cell with I^3 and the product of a homotopy 4-cell with I^2 are both I^6 .

THEOREM. If M^p and N^q are pseudo cells of positive dimensions pand q respectively, with $p+q \ge 6$, then² $M^p \times N^q = I^{p+q}$.

COROLLARY. If $n \ge 8$, then I^n is the product of two combinatorial manifolds with boundary, neither of which is a topological cell.

The following lemma is perhaps well known, but it does not seem to have appeared in print.

LEMMA. If C^n is a compact n-manifold with boundary such that Int $C^n = E^n$ (euclidean n-space) and $B = Bd C^n = S^{n-1}$, then $C^n = I^n$.

PROOF. By Brown's result that the boundary of a manifold is collared [3], there is a homeomorphism h of $B \times [0, 1]$ into C^n such that h(x, 0) = x if $x \in B$. Then, by the generalized Schoenflies theorem [2], the collared (n-1)-sphere $h(B \times 1/2)$ bounds a closed *n*-cell A in Int $C^n = E^n$. Hence $C^n = A \cup h(B \times [0, 1/2])$ is a closed *n*-cell.

PROPOSITION. If C^n is a compact combinatorial n-manifold with boundary, $n \ge 6$, with Int $C^n = E^n$, then $C^n = I^n$.

PROOF. By the Lemma it suffices to show that the boundary B of C^n is an (n-1)-sphere. By the generalized Poincaré conjecture, it is therefore sufficient to show that $\pi_i(B)$ is trivial for $0 \leq i < n-1$ [7;9].

¹ This research was supported by N.S.F. Contract G-11665.

² Equality here denotes topological equivalence.