RESOLUTION OF POSITIVE OPERATORS

BY R. V. CHACON¹

Communicated by G. A. Hedlund, June 18, 1962

We begin with a σ -finite measure space (S, \mathfrak{F}, μ) and a positive linear operator T on L_1 with $||T||_1 \leq 1$. The main result of this note is the following theorem:

THEOREM 1. If $\phi \in L_1$ and is non-negative and if T is regular, then

$$L_1 \stackrel{p}{=} I_p \oplus \overline{M}{}^2$$

where

$$M = \{g: g = f - Tf, f \in L_1\},\$$

$$I_p = \{hp: T(hp) = hTp, hp \in L_1\}.$$

Before proceeding we give some definitions, in particular that of a regular operator. We have used this term in the statement of Theorem 1.

DEFINITION. T is regular if

$$\sum_{k=0}^{\infty} T^k p(s) = + \infty$$

whenever $p \in L_1$ is strictly positive.

We summarize results [2], reducing general operators to regular operators in the following theorem:

THEOREM 2. There exists a set S_1 so that the restriction of T to $L_1(S_1, \mathfrak{F}_1, \mu)$, where $\mathfrak{F}_1 = \mathfrak{F} \cap S_1$, is regular and so that $\sum_{k=0}^{\infty} |T^k f| < +\infty$ on c S_1 . Furthermore, for each $f \in L_1(S_1, \mathfrak{F}_1, \mu)$ there exists a $f_{S_1} \in L_1(S_1, \mathfrak{F}_1, \mu)$ so that

$$\lim_{n\to\infty}\frac{\sum_{k=0}^n T^k(f-f_{S_1})}{\sum_{k=0}^n T^kp}=0$$

on
$$S_1 \cap \{s: \sum_{k=0}^{\infty} T^k p(s) > 0\}$$
.

¹ The work reported in this paper was carried out under a grant from the National Science Foundation, G19046.

² $A = {}^{p} B$ if the spaces are equal with respect to the seminorm obtained by integration over the support of $\sum_{k=0}^{\infty} T^{k} p(s)$.