EVERY PLANAR GRAPH WITH NINE POINTS HAS A NONPLANAR COMPLEMENT

BY JOSEPH BATTLE, FRANK HARARY¹ AND YUKIHIRO KODAMA²

Communicated by Roger Lyndon, August 9, 1962

In a complete graph every two points are joined by a line (are adjacent). A complete graph with n points is denoted by K_n . Let G be a graph with n points considered as a subgraph of K_n . The complement \overline{G} of G is the graph obtained by removing all lines of G from K_n . The following problem was stated by Harary [2]: What is the least integer n such that every graph G with n points or its complement \overline{G} is nonplanar? Harary [3] observed that $n \leq 11$. It is readily seen that n > 8. In this note we shall outline the proof that n = 9, verifying a conjecture of J. L. Selfridge.

THEOREM. If G is a graph with nine points, then G or its complement \overline{G} is nonplanar.

Let p(G) be the number of points, q(G) the number of lines, and k(G) the number of components of graph G. Let $K_{m,n}$ be a graph with m+n points, m points of one color and n points of another, in which two points are adjacent if and only if their colors are different. Kuratowski [5] proved the classic theorem that a graph is nonplanar if and only if it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.

PROPOSITION 1. In each of the following cases, a graph G is nonplanar. (i) $p(G) \ge 6$ and $k(\overline{G}) \ge 4$.

(ii) $p(G) \ge 7$, $k(\overline{G}) \ge 3$ and \overline{G} has at most one isolated point.

(iii) $p(G) \ge 7$, $k(\overline{G}) = 2$ and each component of \overline{G} contains at least three points.

(iv) $p(G) \ge 9$ and $k(\overline{G}) \ge 3$.

In each of these cases, it is easy to see that G contains $K_{3,3}$ as a subgraph. Thus G is nonplanar by Kuratowski's theorem.

PROPOSITION 2. If $p(G) \ge 9$, $k(\overline{G}) = 2$ and G is planar, then \overline{G} is nonplanar.

By Propositions 1 and 2, it is sufficient to prove the theorem under the hypothesis that \overline{G} is connected.

Let G be a planar graph with $p(G) \ge 4$. Imbed G into a 2-sphere S. By Fáry's theorem [1], there exists a triangulation T of S whose

 $^{^{1,2}}$ The preparation of this note was supported in part by the National Science Foundation.