VECTOR FIELDS ON SPHERES

BY J. F. ADAMS¹

Communicated by Deane Montgomery, October 9, 1961

Let us write $n = (2a+1)2^b$, where a and b are integers, and let us set $b = c + 4d$, where c and d are integers and $0 \le c \le 3$; let us define $p(n) = 2^c + 8d$. Then it follows from the Hurwitz-Radon-Eckmann theorem in linear algebra that there exist $p(n) - 1$ vector fields on S^{n-1} which are linearly independent at each point of S^{n-1} (cf. [4]).

THEOREM 1.1. With the above notation, there do not exist $p(n)$ linearly *independent vector fields on* S^{n-1} .

This theorem asserts that the known positive result, stated above, is best possible. Like the theorems given below, it is copied without change of numbering from a longer paper now in preparation.

Theorem 1.1 may be deduced from the following result (cf. $[1]$).

THEOREM 1.2. The truncated projective space $RP^{m+p(m)}/RP^{m-1}$ is *not coreducible; that is, there is no map f: RP^{m+p(m)}/RP^{m−1}→S^m such that the composite*

$$
S^m = \mathbb{R}P^m / \mathbb{R}P^{m-1} \xrightarrow{i} \mathbb{R}P^{m+p(m)} / \mathbb{R}P^{m-1} \xrightarrow{f} S^m
$$

has degree 1.

Theorem 1.2 is proved by employing the "extraordinary cohomology theory["] $K(X)$ of Atiyah and Hirzebruch [2; 3]. If our truncated projective space X were coreducible, then the group $K(X)$ would split as a direct sum, and this splitting would be compatible with any "cohomology operations" that one might define in the "cohomology theory" *K(X).*

THEOREM 5.1. *It is possible to define operations*

$$
\Psi_{\Lambda}^{\kappa} \colon K_{\Lambda}(X) \to K_{\Lambda}(X)
$$

for any integer k (positive, negative or zero) and for $\Lambda = R$ (*real numbers*) or $\Lambda = C$ (complex numbers). These operations have the following prop*erties.*

(i) Ψ_{Λ}^{k} is natural for maps of X.

(ii) $\Psi_{\Lambda}^{\mathbf{r}}$ *is a homomorphism of rings with unit.*

(iii) *The following diagram is commutative.*

¹ Supported in part by the National Science Foundation under grant G14779.