A CLASS OF GEOMETRIC LATTICES

K. ROGERS AND E. G. STRAUS

Communicated by E. F. Beckenbach, December 26, 1959

1. Introduction. By an *n*-dimensional lattice Λ we mean, as usual, an additive subgroup with *n* linearly independent generators of the vectors in Euclidean *n*-space, \mathbb{R}^n . If we denote by \mathbb{Z}^n the lattice of vectors with integral components, then Λ is the image of \mathbb{Z}^n under a nonsingular linear transformation:

$$\Lambda = \{ A \boldsymbol{u} \mid \boldsymbol{u} \in Z^n \}, \qquad \det A \neq 0.$$

The matrices mapping Z^n onto Λ constitute a coset AU of the subgroup of all integral unimodular matrices, and so det $\Lambda = |\det A|$ is well-defined. It is convenient to use the same name Λ for the pointlattice of all points P such that OP is in Λ .

Minkowski [2] showed that every lattice of determinant one contains a point other than the origin 0 in the cube

$$\{(x_1, \cdots, x_n) \mid |x_i| \leq 1, i = 1, \cdots, n\},\$$

and that the same holds if any n-1 of the signs are replaced by strict inequality. Those unimodular lattices, such as Z^n , which have only the origin in common with the open cube shall be called *critical*, as shall the corresponding matrices. Minkowski conjectured, and Hajos [1] proved in 1938, that a critical lattice must contain one of the points $(\delta_{i1}, \dots, \delta_{in}), i=1, \dots, n$. If A is critical then so is any matrix obtained from it by permuting rows and post-multiplication by integral unimodular matrices: such matrices will be called *equivalent* to A. An induction argument shows that Hajos' theorem is the same as the assertion:

A is critical if and only if it is equivalent to a matrix with ones on the diagonal and all zeros above.

Siegel [3] tried to prove Minkowski's conjecture by showing that, if A is critical, then each point other than 0 of the lattice corresponding to A has at least one coordinate in Z^* , the set of nonzero integers. If we consider the set of matrices A defined by the property

(P)
$$u \in Z^n$$
, $u \neq 0 \Rightarrow Au$ has a component in Z^* ,

then Hajos' theorem would follow from Siegel's result, if it were true that every A with property (P) has an integral row. For in that case we could prove by induction on n that A is equivalent to a triangular matrix with zeros above the diagonal and positive integers on the