SPACES OF RIEMANN SURFACES AS BOUNDED DOMAINS¹

BY LIPMAN BERS

Communicated November 14, 1959

1. A surface of type (g, n) is a surface S obtained by removing $n \ge 0$ distinct points from a closed Riemann surface of genus g; we assume always that 3g-3+n>0. Such a surface S is marked by choosing a homotopy class [f] of orientation preserving homeomorphisms f of S onto a fixed reference surface S_0 . Two marked surfaces $(S_1, [f_1])$ and $(S_2, [f_2])$ are equivalent if there is a conformal mapping g with $g(S_1) = S_2$, $[f_2g] = [f_1]$. The Teichmüller space $T_{g,n}$ is the set of equivalence classes of marked surfaces of type (g, n). It is known that $T_{g,n}$ carries two natural structures: that of a metric space, homeomorphic to a (6g-6+2n)-cell [1; 4; 10; 11], and that of a complex manifold [2; 5; 7; 8; 12].

We sketch in §§2-7 a proof of the

THEOREM. $T_{g,n}$ is (holomorphically equivalent to) a bounded domain in complex number space.

In §§8-10 we consider factor spaces of $T_{g,n}$.

2. A group G of Möbius transformations is called a Schottky group of genus g if there exists a closed region R (standard fundamental region) on the Riemann sphere P, bounded by 2g disjoint Jordan curves C_j , and g elements A_1, \dots, A_g of G (standard set of generators) with $A_j(C_{2j-1}) = C_{2j}$. In this case the A_j generate G, the limit points of G form a perfect nowhere dense set Q(G) of measure zero, G is properly discontinuous and fixed-point-free on P-Q(G), and (P-Q(g))/G is a closed Riemann surface of genus g.

Every closed Riemann surface can be so represented.

This classical theorem (Klein-Koebe-Courant) can be proved as follows. Let G_0 be a *fixed* Schottky group and S a *given* closed Riemann surface of the same genus. Then S can be represented as the surface $(P-Q(G_0))/G_0$ on which the conformal structure has been redefined by means of a Riemannian metric $ds = |dz + \mu(z)d\bar{z}|$, where $\mu(z)$ is measurable, $\mu(z)dz/d\bar{z}$ is invariant under G_0 and $|\mu(z)| \leq k < 1$ (cf. [3; 4]). Let $z \rightarrow W(z)$ be the uniquely determined homeomorphism

¹ This paper represents results obtained at the Institute of Mathematical Sciences, New York University, under the sponsorship of the Office of Ordnance Research, U. S. Army, Contract No. DA-30-069-ORD-2153. Reproduction in whole or in part permitted for any purpose of the United States Government.