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1. Introduction. The objective of this paper is to verify the con
jecture made in [2] that every Hurewicz fibration [3] over a poly
hedral base is fiber homotopy equivalent to a Steenrod fiber bundle 
[6]. The result relies heavily on Milnor's universal bundle construc
tion [4] and the following extension [2] of a theorem of A. Dold [ l ] . 

THEOREM. If [E\, p\, X} and {E2, pi, X\ are Hurewicz fibrations 
over a connected CW-complex X and if f: Ei—>E2 is a fiber-preserving 
map such that f restricted to some fiber is a homotopy equivalence, then f 
is a fiber homotopy equivalence. 

2. The associated bundle. Let TT: E—>X denote a map, where X is 
a connected, locally finite polyhedron. Furthermore following Mil
nor's notation in [4], let S, Ë, G denote, respectively, the simplicial 
paths in X, the simplicial paths emanating from a fixed vertex Vo and 
the simplicial loops at Vo. If a= [xn, • • • , Xo] is a simplicial path in 
X we will find it convenient to set a(0)=x0l a(l)=xn. Now, define 

a T = {(*,«) eEXS\w(e) = a ( 0 ) } 

and a map £: Qv—>X by 

*(*,«) = a ( l ) . 

Furthermore, let 

A = fl(vo) = {(*, a) | *(e) = a(0), a( l) = vQ}. 

LEMMA. {0 r , %, X, A, G} is a Steenrod fiber bundle. 

PROOF. Since the proof is entirely analogous to Milnor's proof [4] 
that Ë is a bundle over X, we content ourselves with a brief outline. 
The action JU: GXA—>A is defined as follows: 

/*[& (*> «)] = (e, go). 

Now, let Vj denote a vertex in X and Fy the star neighborhood of Vj. 
The coordinate functions 

0y: 7y X il -> r T O 

are defined by 
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