THE EQUIVALENCE OF FIBER SPACES AND BUNDLES1

BY EDWARD FADELL

Communicated by Hans Samelson, October 8, 1959

1. Introduction. The objective of this paper is to verify the conjecture made in [2] that every Hurewicz fibration [3] over a polyhedral base is fiber homotopy equivalent to a Steenrod fiber bundle [6]. The result relies heavily on Milnor's universal bundle construction [4] and the following extension [2] of a theorem of A. Dold [1].

THEOREM. If $\{E_1, p_1, X\}$ and $\{E_2, p_2, X\}$ are Hurewicz fibrations over a connected CW-complex X and if $f: E_1 \rightarrow E_2$ is a fiber-preserving map such that f restricted to some fiber is a homotopy equivalence, then f is a fiber homotopy equivalence.

2. The associated bundle. Let $\pi \colon E \to X$ denote a map, where X is a connected, locally finite polyhedron. Furthermore following Milnor's notation in [4], let \tilde{S} , \tilde{E} , \tilde{G} denote, respectively, the simplicial paths in X, the simplicial paths emanating from a fixed vertex v_0 and the simplicial loops at v_0 . If $\alpha = [x_n, \dots, x_0]$ is a simplicial path in X we will find it convenient to set $\alpha(0) = x_0$, $\alpha(1) = x_n$. Now, define

$$\Omega_{\pi} = \{(e, \alpha) \in E \times \tilde{S} \mid \pi(e) = \alpha(0)\}$$

and a map $\xi: \Omega_{\pi} \rightarrow X$ by

$$\xi(e, \alpha) = \alpha(1).$$

Furthermore, let

$$A \, = \, \xi^{-1}(v_0) \, = \, \big\{ (e, \, \alpha) \, \big| \, \, \pi(e) \, = \, \alpha(0), \, \alpha(1) \, = \, v_0 \big\}.$$

LEMMA. $\{\Omega_{\pi}, \xi, X, A, \tilde{G}\}$ is a Steenrod fiber bundle.

PROOF. Since the proof is entirely analogous to Milnor's proof [4] that \tilde{E} is a bundle over X, we content ourselves with a brief outline. The action $\mu: \tilde{G} \times A \rightarrow A$ is defined as follows:

$$\mu[g, (e, \alpha)] = (e, g\alpha).$$

Now, let v_j denote a vertex in X and V_j the star neighborhood of v_j . The coordinate functions

$$\phi_j \colon V_j \times A \to \xi^{-1}(V_j)$$

are defined by

¹ This research was supported, in part, by the Wisconsin Alumni Research Foundation.