LOCALLY TRIVIAL HOMOLOGY THEORIES, AND THE POINCARÉ DUALITY THEOREM

BY H. B. GRIFFITHS

Communicated by Deane Montgomery, July 21, 1958

The following is a brief account of a forthcoming memoir. A complex with covering is a triple $(K, \mathfrak{K}, \mathrm{St})$, often written (K, \mathfrak{K}) , where (i) K is a chain complex $\{C_q K, \partial_q\}$ and $\mathfrak{K} = \{K^{\lambda}\}$ is a collection of subcomplexes of K such that $K = \Sigma K^{\lambda}$, i.e. each $x \in C_q K$ is a finite sum of members of the groups $C_q K^{\lambda}, K^{\lambda} \in \mathfrak{K}$; (ii) K is augmented, i.e. ∂_0 is a homomorphism of $C_0 K$ in the integers, such that $\partial_0 | C_0 K^{\lambda}$ is onto, for each K^{λ} ; (iii) each K^{λ} lies in some sub-complex St K^{λ} of K, (e.g. St K^{λ} might be ΣK^{μ} over all μ with $K^{\lambda} \cap K^{\mu}$ nontrivial). (K, \mathfrak{K}) is free whenever there exist sets G_q such that $G_q \cap C_q K^{\lambda}$ freely generates each K^{λ} , $(0 \leq q \leq \infty)$.

Let $(K, \mathfrak{K}, \operatorname{St}_K)$, $(J, \mathfrak{g}, \operatorname{St}_J)$ be complexes with covering. A map $\pi: \mathfrak{K} \to \mathfrak{g}$ is coherent whenever $K^{\lambda} \cap K^{\mu}$ nontrivial implies $\pi K^{\lambda} \subseteq \operatorname{St}_J(\pi K^{\mu})$. A relation $(K, \mathfrak{K}) \to^{\mathfrak{u}}(J, \mathfrak{g})$ is a chain homomorphism $u_1: K \to J$ which preserves augmentations, together with a map $u_2: \mathfrak{K} \to \mathfrak{g}$, such that $\operatorname{Im}(u_1 | K^{\lambda}) \subseteq u_2 K^{\lambda}$ for all $K^{\lambda} \in \mathfrak{K}$. We replace the arrow in the above relation by $\to_{\mathfrak{k}}$ or $\to_{\mathfrak{q}}$ according as $\operatorname{Im}(u_1 \operatorname{St}_K K^{\lambda}) \subseteq u_2 K^{\lambda}$, or $\operatorname{Im}(u_1 | q$ -cycles of $K^{\lambda}) \subseteq$ boundaries of $u_2 K^{\lambda}$, for each $K^{\lambda} \in \mathfrak{K}$.

Now suppose there exists a diagram of relations

 $(A^{0}, \mathbb{C}^{0}) \xrightarrow{\mathcal{U}} (A, \mathbb{C}) \xrightarrow{\overline{\nu}} (B^{1}, \mathbb{C}^{1}) \xrightarrow{\longrightarrow} (A^{1}, \mathbb{C}^{1}) \xrightarrow{\longrightarrow} \cdots$ $(\dagger) \qquad \downarrow \sigma^{0} \qquad \downarrow \tau \qquad \downarrow \sigma^{1}$ $(L^{0}, \mathfrak{L}^{0}) \xrightarrow{\mathcal{W}} (M^{1}, \mathfrak{M}^{1}) \xrightarrow{\longrightarrow} (L^{1}, \mathfrak{L}^{1}) \xrightarrow{\longrightarrow} \cdots$ $\xrightarrow{\rightarrow} (B^{n}, \mathbb{C}^{n}) \xrightarrow{n-1} (A^{n}, \mathbb{C}^{n}) \xrightarrow{\longrightarrow} (B^{n+1}, \mathbb{C}^{n+1}) \longrightarrow (A^{n+1}, \mathbb{C}^{n+1})$ $\downarrow \sigma^{n} \qquad \downarrow \sigma^{n+1}$

$$\xrightarrow{\ast} (M^1,\mathfrak{M}^n) \xrightarrow{}_{n-1} (L^n, \, \mathscr{L}^n) \xrightarrow{\ast} (M^{n+1}, \mathfrak{M}^{n+1}) \xrightarrow{}_n (L^{n+1}, \, \mathscr{L}^{n+1})$$

(the top right arrow carrying no "n"). Suppose that (L^0, \mathcal{L}^0) is free, and that there exists a *coherent* map $\gamma: \mathcal{L}^0 \to \mathcal{C}$ such that (i) the composite maps $\mathcal{L}^0 \to \mathcal{C}^q$, $\mathcal{L}^0 \to \mathcal{L}^q$ are coherent; (ii) $\gamma \sigma_2^0 = u_2^0$; (iii) $\tau v_2 \gamma = w_2$; (iv) each square is commutative (e.g. $\tau_i v_i u_i = w_i \sigma_i^0$, i = 1, 2). Then for each $q = 0, 1, \dots, n+1$, and abelian group G, there exist homology and cohomology diagrams