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The following is a brief account of a forthcoming memoir. A com-
plex with covering is a triple (K, &, St), often written (X, &), where
(i) K is a chain complex {C.K, d,} and &= {K*} is a collection of
subcomplexes of K such that K=ZK?*, i.e. each xEC,K is a finite
sum of members of the groups C,K*, K*& X; (ii) K is augmented, i.e.
do is a homomorphism of CoK in the integers, such that 80| CoK? is
onto, for each K*; (iii) each K* lies in some sub-complex St K* of K,
(e.g. St K* might be ZK* over all y with K*\K* nontrivial). (X, &)
is free whenever there exist sets G, such that G;N\C K* freely gener-
ates each K*, (0=¢=< x).

Let (K, &, Stx), (J, J, Sts) be complexes with covering. A map
m: R—g is coherent whenever KMNK* nontrivial implies «K*
CSty(wK*). A relation (K, X)—*(J, g) is a chain homomorphism
u1: K—J which preserves augmentations, together with a map
Uus: X— 9, such that Im (u1| KM Cu,K* for all K*& XK. We replace the
arrow in the above relation by —« or —, according as Im (u; StgK*)
Cu:K», or Im (u|g-cycles of K*)Cboundaries of u,K*, for each
Kex.

Now suppose there exists a diagram of relations
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(the top right arrow carrying no “n”). Suppose that (L° £9) is free,
and that there exists a coherent map v: £°—>@ such that (i) the com-
posite maps £°— @9, £°—£7 are coherent; (i) o3 =u3; (iii) Tvyy =ws;
(iv) each square is commutative (e.g. 7omi=w,0}, 1=1, 2). Then for
each ¢=0, 1, - - -, n+1, and abelian group G, there exist homology
and cohomology diagrams
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