of its derivative. Interesting contributions have been made to the
theory of trigonometric integration, such as Verblunsky's approx­imate Denjoy integral and Burkill's Cesaro-Perron integral, in the
intervening years between the author's original researches (1921)
and the publication of this book, though there is no mention of them
here.

Starting from de la Vallée-Poussin's result, the treatise covers all
the ground that is necessary to reach the final result of the author.
The fourth part, under review, comprises Chapters VII to IX, with
a few Appendices at the end. In Chapter VII the author develops the
theory of the Denjoy integral (totalisation simple) with the aid of a
new notion of totalisation of series, presented here for the first time.
In Chapter VIII he treats Stieltjes integrals relative to general meas­ures. In Chapter IX he presents a complete solution of the main
problem, explained above, and illustrates with examples the impos­sibility of relaxing any of the conditions formulated in his definition
of the "trigonometric integral." The Appendices deal mainly with the
special Denjoy integral using majorants and minorants, besides con­taining a rather severe criticism of Perron's definition of integral on
the ground that it is nonconstructive.

In contrast with the earlier notes of the author which were brief,
the present work is very elaborate and even diffuse. It bears witness
to the highly ingenious and original mind of the author. To appreci­ate it, one has to read the book in full; no part of it can be detached
from the rest. This, however, is not an unmixed blessing. Though the
title of the book sounds very special, its content is not narrow; it is
really a survey, in the singular fashion of the author, of the various
sectors of the theory of functions of a real variable that surround the
very difficult problem of the calculation of coefficients of trigono­metrical series. The work that is embodied in this book has already had
considerable influence on that of other mathematicians; in this sense,
one regrets that the book did not appear sooner. Anyone interested
in the theory of non-absolutely convergent integrals would consider
the book valuable.

K. Chandrasekharan

Lectures on classical differential geometry. By D. J. Struik. Cambridge,
Addison-Wesley, 1950. 8 + 221 pp. $6.00.

There is many a good reason to welcome this new book on differ­ential geometry.

First of all, there is the very fact that it is devoted to *classical*
differential geometry, that is, to the wealth of ideas from which all
further developments have been derived. The comprehensive his-