A NOTE ON S-SPACES

E. G. BEGLE

An S-space is a normal topological space in which each covering by open sets has a refinement which is star-finite, that is, each set of the refinement meets only a finite number of sets of the refinement. Thus a compact (=bicompact) space is an S-space, and an S-space is paracompact [1].¹

In this note we discuss cartesian products in which one of the factors is an S-space. We show that if the other factor is compact, then the product is an S-space, and the dimension of the product does not exceed the sum of the dimensions of the factors. However, if both factors are S-spaces, the product need not be an S-space.

THEOREM. Let A be an n-dimensional S-space and B an m-dimensional compact space. Then $A \times B$ is an S-space and $\dim(A \times B) \leq n+m$.

By the dimension of a space we mean, of course, the Lebesgue dimension (cf. [2, p. 206]).

Let \mathfrak{W}_0 be an arbitrary covering of $A \times B$. We are going to construct a locally-finite cell complex, D, with dim $D \leq n+m$, a mapping f of $A \times B$ onto D, and a covering \mathfrak{Y} of D such that $f^{-1}(\mathfrak{Y})$ is a refinement of \mathfrak{W}_0 .

Let *a* be any point of *A*. Each point of $a \times B$ is contained in an open set of the form $U \times V$, *U* open in *A*, *V* open in *B*, such that $U \times V$ is contained in an open set of \mathfrak{W}_0 . For a fixed point $a \in A$, the set of all such *V*'s is a covering of *B*, and hence a finite number of them, say $V_{a,1}, V_{a,2}, \cdots, V_{a,k(a)}$, form a covering \mathfrak{B}_a of *B*. Let U_a be the intersection of the corresponding *U*'s.

The collection of all such sets U_a is a covering of A. Hence there is a star-finite refinement \mathfrak{U} of this covering whose order is no more than n+1. We may also assume [2, p. 210] that \mathfrak{U} is *normal*, that is, that there is a mapping ϕ of A onto $N(\mathfrak{U})$ such that each open set of \mathfrak{U} is the inverse image, under ϕ , of the star of a vertex of $N(\mathfrak{U})$.

We form a covering \mathfrak{W} of $A \times B$ as follows: each set U of \mathfrak{U} is contained in some U_a , and with each U_a is associated a covering \mathfrak{V}_a of B. Form the product of U with each set of \mathfrak{V}_a . The totality of these products forms \mathfrak{W} , and by construction, \mathfrak{W} is a refinement of \mathfrak{W}_0 .

Let θ be the mapping of $A \times B$ onto $N(\mathfrak{U}) \times B$ defined by $\theta(a \times b) = \phi(a) \times b$, where ϕ is the above mapping of A onto $N(\mathfrak{U})$. Each ele-

Received by the editors May 15, 1948.

¹ Numbers in brackets refer to the references cited at the end of the paper.