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Though the problems concerning perfect and multiply perfect 
numbers are among the oldest of number theory, very little progress 
has been made in the investigation of these numbers. A &-ply perfect 
number is one for which a(n) = kn where a(n) is the sum of the di­
visors of n. The case k = 2 is that of the perfect numbers. Though the 
form of the even perfect numbers is completely determined [ l ] , 1 the 
question of whether or not there exists any odd perfect numbers is 
still a complete mystery. Sylvester [2 ] has shown that an odd per­
fect number must have at least five distinct prime factors, and Dick­
son [3 ] has proved that there are at most a finite number of odd per­
fect numbers having any given number of distinct prime factors. 
More generally, defining "primitive non-deficient" numbers to be 
those integers n for which 

(1) <r(n)/n ^ 2 

and such that (1) does not hold for any proper divisor of nt Dickson 
showed that there are at most a finite number of odd primitive non-
deficient numbers having a given number of distinct prime factors. 
In this note we shall give a simpler proof of Dickson's theorem; in 
fact prove a more general theorem which includes Dickson's as a spe­
cial case. 

DEFINITION 1. An integer n shall be called fe-non-deficient (k any 
positive real number) if 

(2) a(n)/n è k 

and ^-deficient otherwise. 
DEFINITION 2. An integer n shall be called primitive fe-non-deficient 

if n is ^-non-deficient, and all proper divisors of n are ^-deficient. 
Our generalization of Dickson's theorem may then be stated as: 

THEOREM 1. There are at most a finite number of primitive k-non-
deficient numbers n such that 

(a) if k is rational, n is relatively prime to the numerator of k; and 
(b) the number of distinct prime factors of n is fixed. 

PROOF. We assume that there are an infinite number of such primi-
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