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We prove the following theorem. 

THEOREM 1. Let SD be any commutative principal ideal ring without 
divisors of zero, and A any matrix with elements in 35 whose character­
istic equation factors into linear factors in ©. Then there exists a uni-
modular matrix T, with elements in ©, such that T~l AT has zeros below 
the main diagonal. 

This theorem was proved by Leavitt [ l ] 1 for the special case of the 
ring § of all functions of a complex variable holomorphic in, and on 
the boundary of, a closed bounded region R. His paper contains a 
proof that this set of functions forms such a ring ; and gives an essen­
tially algebraic construction for the transforming matrix T of the 
ring. Since this construction uses only properties of § which are 
shared by all principal ideal rings [2; pp. 168-170] for [3; vol. 1, pp. 
60-67], it can be carried out in all such rings. 

The only changes necessary are those of terminology: "Holo­
morphic functions" must be replaced by "elements of 35." Two ele­
ments are called associated if they differ by a unit factor. Since the 
prime ideals of § are the ideals generated by the functions (Z — ZQ), 
ZoÇzR, one must replace i(a(z) has a zero of hth order at Zo" 
by "a = 0 mod 0PA),W and so on. Substituting a constant z0 for z 
corresponds to mapping the ring >̂ into its homomorphic image 
§/(z — Zo). Thus since 35/$ is always a field or our rings 35, the 
original arguments hold. 

The one portion of the proof which might seem difficult to gen­
eralize is the use, in the final construction of the transforming matrix, 
of the theorem on the existence of a holomorphic function whose 
expansion at a finite number of points is specified to a finite number 
of terms. But this is simply the theorem that in any ring with unique 
factorization into prime ideals, we can find an element satisfying a 
finite number of simultaneous congruences, provided that the moduli 
are powers of different prime ideals. This can be proved for all prin­
cipal ideal rings by the argument used to prove the Chinese remainder 
theorem in [4; p. 12]. 

I t is also possible to give a much simpler proof of our theorem. 
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