NUMERICAL INVERTING OF MATRICES OF HIGH ORDER

JOHN VON NEUMANN AND H. H. GOLDSTINE

ANALYTIC TABLE OF CONTENTS

PREFACE 1022

CHAPTER I. The sources of errors in a computation

1.1. The sources of errors.
 (A) Approximations implied by the mathematical model.
 (B) Errors in observational data.
 (C) Finitistic approximations to transcendental and implicit mathematical formulations.
 (D) Errors of computing instruments in carrying out elementary operations: "Noise." Round off errors. "Analogy" and digital computing. The pseudo-operations. .. 1023

1.2. Discussion and interpretation of the errors (A)-(D). Stability 1027
1.3. Analysis of stability. The results of Courant, Friedrichs, and Lewy 1028
1.4. Analysis of "noise" and round off errors and their relation to high speed computing .. 1029
1.5. The purpose of this paper. Reasons for the selection of its problem.... 1030
1.6. Factors which influence the errors (A)-(D). Selection of the elimination method ... 1031
1.7. Comparison between "analogy" and digital computing methods......... 1031

CHAPTER II. Round off errors and ordinary algebraical processes.

2.1. Digital numbers, pseudo-operations. Conventions regarding their nature, size and use: (a), (b) ... 1033
2.2. Ordinary real numbers, true operations. Precision of data. Conventions regarding these: (c), (d) ... 1035
2.3. Estimates concerning the round off errors:
 (e) Strict and probabilistic, simple precision.
 (f) Double precision for expressions $\sum_{i=1}^{n} a_i x_i$ 1035
2.4. The approximative rules of algebra for pseudo-operations 1038
2.5. Scaling by iterated halving ... 1039

CHAPTER III. Elementary matrix relations.

3.1. The elementary vector and matrix operations 1041
3.2. Properties of $|A|$, $|A|_1$ and $N(A)$.. 1042
3.3. Symmetry and definiteness .. 1045
3.4. Diagonality and semi-diagonality 1046
3.5. Pseudo-operations for matrices and vectors. The relevant estimates... 1047

CHAPTER IV. The elimination method.

4.1. Statement of the conventional elimination method 1049
4.2. Positioning for size in the intermediate matrices 1051
4.3. Statement of the elimination method in terms of factoring A into semi-diagonal factors C, B' 1052
4.4. Replacement of C, B' by B, C, D 1054
4.5. Reconsideration of the decomposition theorem. The uniqueness theorem 1055

Presented to the Society, September 5, 1947; received by the editors October 1, 1947. Published with the invited addresses for reasons of space and editorial convenience.