4.1 Remarks. Suppose that the hypothesis of a theorem involves convergence (σ) . It may happen (and does indeed in the case of all theorems in [S]) that convergence (σ_1) may be substituted in the hypothesis as follows: each σ -region which occurs in the proof is a σ_n -region for some n; if there is a largest such n call it N. Then convergence (σ_N) may be substituted in the hypothesis and may, by Theorem I, be replaced by convergence (σ_1) . Lemma 10 is an example of an exception to this statement; there is no largest n and convergence (σ) is essential.

If a series is convergent (σ_1) then, for a given n, the series is convergent (σ_n) . Hence, given $\epsilon > 0$ there are indices (p, q) such that $|A - \sum_{i=1}^n (R_i)| < \epsilon$ for every σ_n -region R which is a region (p, q). In general (p, q) will depend on n; if the choice does not depend on n then the series is convergent (σ) .

Brown University

THE DIFFERENTIABILITY AND UNIQUENESS OF CONTINUOUS SOLUTIONS OF ADDITION FORMULAS

NELSON DUNFORD AND EINAR HILLE

The problem of representing a one-parameter group of operators (that is, a family T_{ξ} , $-\infty < \xi < \infty$, of bounded linear operators on a Banach space which satisfies $T_{\xi+\xi} = T_{\xi}T_{\xi}$) reduces according to several well known methods of attack to establishing differentiability of the function T_{ξ} at $\xi=0$. The derivative $Ax=\lim_{\xi\to 0} \xi^{-1}(T_{\xi}-I)x$ exists as a closed operator with domain D(A) dense, providing T_{ξ} is continuous in the *strong* operator topology (that is, $\lim_{\xi\to\xi_0}T_{\xi}x=T_{\xi_0}x$, $x\in\mathfrak{X}$). It is then possible to assign a meaning to $\exp(\xi A)$ in a natural way and so that $T_{\xi}=\exp(\xi A)$, $-\infty < \xi < \infty$. The operator A is bounded if and only if T_{ξ} is continuous in ξ in the *uniform* operator topology (that is, $\lim_{\xi\to\xi_0} \left|T_{\xi}-T_{\xi_0}\right|=0$) in which case $A=\lim_{\xi\to 0} \xi^{-1}(T_{\xi}-I)$ exists in the uniform topology. This implies that T_{ξ} is an entire function of ξ ; conversely, if T_{ξ} is analytic anywhere, then A is bounded. These considerations extend to the semi-group case in which $T_{\xi+\xi}=T_{\xi}T_{\xi}$ is known to hold only for positive values of the parameters, although

Presented to the Society, August 14, 1944; received by the editors February 17, 1947.