NOTE ON POWER SERIES

MAX A. ZORN

1. The problem. The following question was raised by Bochner. Let $\sum \alpha_{ik} \xi^i \eta^k$ be a power series with complex coefficients, such that substitution of convergent power series $\sum_{i=1}^{\infty} \alpha_i \zeta^i$ and $\sum_{i=1}^{\infty} \beta_i \zeta^i$ for ξ and η produces always a convergent power series in ζ . Is the double series $\sum \alpha_{ik} \xi^i \eta^k$ convergent?

The answer is yes; we present a proof which presupposes from function theory only the Cauchy estimate for the coefficients of polynomials in a complex variable:

(C)
$$|\gamma_k \zeta_0^k| \leq (|\zeta| \neq |\zeta_0|) \sup |\sum \gamma_k \zeta^k|.$$

We note that this estimate is also valid in certain types of fields with non-Archimedian valuations, namely, those for which the values are dense and the index is infinite; this was shown by Schoebe in [1].¹

2. Homogeneous polynomials. We denote a vector (ξ, η) by x and introduce as the norm ||x|| of x the maximum of $|\xi|$ and $|\eta|$. A complex Banach space results which, as a complete metric space, is of the second category with respect to itself. We then consider homogeneous polynomials $P(x) = \sum_{i+k=n} \alpha_{ik} \xi^i \eta^k$; it is clear that $P(\zeta x) = \zeta^n P(x)$, that $P(x+\zeta x_0)$ is a polynomial in ζ , and that P is a continuous function of x.

The following three lemmata are immediate consequences of the estimate (C).

(2.1) LEMMA. If $|P(x)| \leq M$ for $||x|| \leq \zeta$, then $|\alpha_{ik}\xi^i\eta^k| \leq M$ for $|\xi|, |\eta| \leq \zeta$.

(2.2) LEMMA.
$$|P(x)| \leq (|\zeta| = 1) \sup |P(x + \zeta x_0)|$$
.

This special case of the principle of the maximum is a special case of (C), applied to the constant term of $P(x+\zeta x_0)$, considered as a polynomial in ζ . It is used in the proof of (2.3).

(2.3) LEMMA. If $|P(x)| \leq M$ for $||x-x_0|| \leq \zeta$, then $|P(x)| \leq M$ for $||x|| \leq \zeta$.

PROOF (compare [2, p. 590]): $|P(x)| \leq (|\zeta| = 1) \sup |P(\zeta x_0 + x)|$ = $(|\zeta| = 1) \sup |P(x_0 + \zeta^{-1}x)| \leq (||x_1 - x_0|| \leq ||x||) \sup |P(x_1)|$.

Received by the editors February 24, 1947.

¹ Numbers in brackets refer to the references cited at the end of the paper.