A PROPERTY OF DERIVATIVES

J. A. CLARKSON

If a real function defined over a closed interval [a, b] is differentiable at each point of the interval, it is well known that its derivative possesses the Darboux property: if $f'(c) < \xi < f'(d)$, then there is a point e between c and d with $f'(e) = \xi$.

Now let α , β , with $\alpha < \beta$, be any two fixed reals, and consider the set $E(\alpha, \beta) = E\{x/\alpha < f'(x) < \beta\}$. It is easily seen, as a consequence of the Darboux property, that any such set $E(\alpha, \beta)$ must contain a continuum of points, unless it is empty. The question of the measure of $E(\alpha, \beta)$ does not seem to be covered in the literature, except in the case in which the given interval is either $(-\infty, \beta)$ or $(\alpha, +\infty)$. We prove that any such set $E(\alpha, \beta)$ is either empty or of positive measure.

We remark that this result cannot be deduced from the Darboux property alone; Lebesgue exhibited a function¹ which possesses that property without satisfying the measure condition. Another example is the following. Let C be the Cantor closed nondense set of measure zero and power c in the unit interval, and let $\{T_n\}$ $(n=1, 2, 3, \cdots)$ be a sequence of linear transformations such that the sets $T_n(C)$ are disjoint, and such that any sub-interval of [0, 1] contains some $T_n(C)$. We take T_1 to be the identity. Let the function g(x) be defined on C in such a way as to assume all values from zero to one inclusive; on $T_n(C)$ let $g(x) = g(T_n^{-1}(x))$. On all remaining points of the unit interval set g(x) = 0. It is clear that this function g possesses the Darboux property, but that the set $E\{x/1/2 < g(x) < 1\}$ will be nonvoid and of measure zero.

THEOREM. If f(x) is real and everywhere differentiable in the closed interval [a, b], then for any two reals α , β ($\alpha < \beta$), the set

$$E(\alpha, \beta) = E\{x/\alpha < f'(x) < \beta\}$$

is empty or of positive measure.

PROOF. We start with the following known result:² if a continuous function f(x) is differentiable in the interval [a, b], with the possible exception of a denumerable set of points x, and if f'(x) is non-negative almost everywhere, then f(x) is nondecreasing. It follows that if f'(x) exists for all x in [a, b], and $f'(x) \ge \lambda$ [or $f'(x) \le \mu$] for almost all x,

Received by the editors July 9, 1946.

¹ Lebesgue, Leçons sur l'intégration, 2d ed., Paris, 1928, p. 97.

² Saks, Théorie de l'intégrale, Warsaw, 1933, p. 141.