GENERATORS OF PERMUTATION GROUPS SIMPLY ISOMORPHIC WITH $LF(2, p^n)$

F. A. LEWIS

It is well known that the group $LF(2, p^n)$ of linear fractional transformations of determinant unity in the $GF[p^n]$ can be represented as a permutation group G of degree p^n+1 . The purpose of this note is to show that the generators of G follow from a slight extension of an argument used in a recent paper.

We obtain a representation of the abstract group L simply isomorphic with the special linear homogeneous group $SLH(2, p^n)$ by means of the cosets K and KTS_{λ} , where λ ranges over the p^n marks of the field $u_0(=0)$, u_1, \dots, u_m , $(m=p^n-1)$. Let $k_{\infty}=K$ and $k_{u_i}=KTS_{u_i}$ for $i=0, 1, \dots, m$.

If ρ is any mark, $KS_{\rho} = K$ and $KTS_{\lambda} \cdot S_{\rho} = KTS_{\lambda+\rho}$, so that to S_{ρ} there corresponds the permutation

(1)
$$s_{\rho} = \begin{pmatrix} k_{\infty} & k_{0} & k_{u_{1}} & \cdots & k_{u_{m}} \\ k_{\infty} & k_{\rho} & k_{u_{1}+\rho} & \cdots & k_{u_{m}+\rho} \end{pmatrix}.$$

If $\lambda \neq 0$, $KTS_{\lambda}T = KTS_{-\lambda^{-1}}$. Further, $KTS_0T = K$, so that to T there corresponds the permutation

$$(2) t = (k_0 k_{\infty} \cdot k_{u_1} k_{-u_1^{-1}} \cdot \cdot \cdot k_{u_m} k_{-u_m^{-1}}).$$

Hence L has a (d, 1) isomorphism with (s_{ρ}, t) , where d is the order of a subgroup of K which is invariant in L. The quotient group (s_{ρ}, t) is simply isomorphic² with $LF(2, p^n)$ and is of order $p^n(p^{2n}-1)/d$, where d=2 or 1 according as $\rho>2$ or $\rho=2$.

THEOREM. A permutation group simply isomorphic with the group $LF(2, p^n)$ of linear fractional transformations of determinant unity in the $GF[p^n]$ is generated by (1) and (2), where ρ ranges over an independent set of additive generators of the field.

COROLLARY.³ A permutation group simply isomorphic with the group LF(2, p) is generated by $(k_0k_1k_2 \cdots k_{p-1})$ and $(k_0k_{\infty} \cdot k_1k_{i_1} \cdot k_2k_{i_2} \cdots)$, where $ji_j \equiv -1 \pmod{p}$.

University of Alabama

Presented to the Society, December 29, 1939 and April 4, 1942; received by the editors February 20, 1942.

¹ A note on the special linear homogeneous group $SLH(2, p^n)$, this Bulletin, vol. 47 (1941), pp. 629-632. The notation and results of this paper are assumed above.

² L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, pp. 87–88.

³ Compare with x'=x+1 and x'=-1/x, which generate LF(2, p).