ON THE SIMULTANEOUS APPROXIMATION OF TWO REAL NUMBERS¹

RAPHAEL M. ROBINSON

If ξ_1 , ξ_2 , \cdots , ξ_n are any real numbers and t is a positive integer, then it is well known that integers a_1 , a_2 , \cdots , a_n , b can be found, such that $0 < b \le t^n$ and

$$|b\xi_k-a_k|<1/t, \qquad k=1,2,\cdots,n.$$

The proof is briefly the following.² Consider the t^n+1 points $(r\xi_1, r\xi_2, \dots, r\xi_n)$, where $r=0, 1, \dots, t^n$. Reduce mod 1 to congruent points in the unit cube $(0 \le x_1 < 1, \dots, 0 \le x_n < 1)$. If this cube is divided into t^n cubes of edge 1/t (including the lower boundaries), then at least one of these small cubes must contain two of the reduced points, say those with r=r' and r=r''. With b=|r'-r''| and suitable a's, we evidently satisfy the required inequalities.

For n = 1, the inequality can be sharpened to

$$|b\xi - a| \leq 1/(t+1),$$

b satisfying the condition $0 < b \le t$. For if we consider the points $r\xi$ $(r=0, 1, \cdots, t)$, and mark the points in the interval $0 \le x \le 1$ which are congruent to them mod 1, we have at least t+2 points marked, since corresponding to r=0 we mark both 0 and 1. Some two of the marked points must lie within a distance 1/(t+1) from each other, so that the desired conclusion follows. This is the best result, as the example $\xi = 1/(t+1)$ shows.

The present note solves the corresponding problem for n=2. For larger values of n the problem appears more difficult.

THEOREM. If ξ_1 and ξ_2 are any real numbers, and s is a positive integer, then integers a_1 , a_2 , b can be found, such that $0 < b \leq s$, and

$$|b\xi_k - a_k| \le \max\left(\frac{[s^{1/2}]}{s+1}, \frac{1}{[s^{1/2}]+1}\right), \qquad k = 1, 2.$$

For every s, values of ξ_1 and ξ_2 can be found for which the inequalities could not both be satisfied if the equality sign were omitted.

¹ Presented to the Society, November 23, 1940.

² The method used in this proof (*Schubfachprinzip* or "pigeonhole principle") was first used by Dirichlet in connection with a similar problem. We sketch the proof here in order to compare it with the proof of the theorem below, which also uses that method.