ON A PROPERTY OF k CONSECUTIVE INTEGERS ${ }^{1}$

ALFRED BRAUER

S. S. Pillai ${ }^{2}$ has just proved the following theorem: In every set of less than 17 consecutive integers there exists at least one integer which is relatively prime to all the others; there are sequences of k integers for $k=17,18, \cdots, 430$, however, which have not this property. Pillai conjectures that the same is valid for every $k \geqq 17$. I shall prove that this conjecture is true.

The method of the proof is similar to the method I applied in a joint paper with H. Zeitz ${ }^{3}$ in proving that the following conjecture is wrong for every prime $p \geqq 43$.

Denote by p_{n} the nth prime. Then there exist at most $2 p_{n-1}-1$ consecutive integers such that each of these integers is at least divisible by one of the primes $p_{1}, p_{2}, \cdots, p_{n}$.

This conjecture was used by Legendre for his proof of the theorem of the primes in arithmetical progressions. First I prove the following.

Lemma. Let $\pi(x)$ be the number of primes $p \leqq x$. Then we have

$$
\begin{equation*}
\pi(2 x)-\pi(x) \geqq 2\left[\frac{\log x}{\log 2}\right]+2 \tag{1}
\end{equation*}
$$

for every $x \geqq 75$.
Proof. If we put, as usual,

$$
\vartheta(x)=\sum_{p \leqq x} \log p
$$

then we have

$$
\begin{align*}
\pi(2 x)-\pi(x) & =\sum_{x<p \leqq 2 x} 1 \geqq \sum_{x<p \leqq 2 x}(\log p / \log 2 x) \tag{2}\\
& =\left\{\sum_{x<p \leqq 2 x} \log p\right\} / \log 2 x=\{\vartheta(2 x)-\vartheta(x)\} / \log 2 x .
\end{align*}
$$

[^0]
[^0]: ${ }^{1}$ Presented to the Society, September 12, 1940.
 ${ }^{2}$ S. S. Pillai, On m consecutive integers, Proceedings of the Indian Academy of Sciences, section A, vol. 11 (1940), pp. 6-12.
 ${ }^{3}$ A. Brauer und H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre, Sitzungsberichte der Berliner mathematischen Gesellschaft, vol. 29 (1930), pp. 116125. Cf. A. Brauer, Question concerning the maximum term in the diatomic seriesproposed by A. A. Bennett, American Mathematical Monthly, vol. 40 (1933), pp. 409410.

