REFLEXIVE BANACH SPACES NOT ISOMORPHIC TO
UNIFORMLY CONVEX SPACES!

MAHLON M. DAY?

Clarkson? introduced the notion of uniform convexity of a Banach
space: B is uniformly convex if for each € with 0<e=2 there is a
3(e)>0 such that whenever ||3]|=]|/3"]|=1 and [|6—b’|| Z¢, then
|6428’|| <2(1—8(e)). Milman* and Pettis® have demonstrated that
any uniformly convex space is reflexive;® that is, that for each & B**
there is a b&EB with B(f) =f(b) for every f&B*. The same result
clearly holds if B is not uniformly convex but can be given a new
norm defining the same topology under which the space is uniformly
convex. It has been conjectured that every reflexive space can be
given such a topologically equivalent uniformly convex norm; that is,
that, in Banach’s terminology,’ every reflexive space is isomorphic
to a uniformly convex space. We shall show by a large class of ex-
amples that this is not the case; in fact the following result holds:

THEOREM 1. There exist Banach spaces which are separable, reflexive,
and strictly convex,® but are not isomorphic to any uniformly convex
space.

We shall start with a class of Banach spaces and pick out a simple
example having all but the strict convexity property; with this as a
sample of what can happen we easily find a large number of spaces
satisfying all the conditions of the theorem. As an application of our
results we show that certain ergodic theorems of Alaoglu and Birk-
hofl? can be extended to some non-uniformly convex spaces.
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