A NOTE ON A THEOREM BY WITT ${ }^{1}$

ROBERT M. THRALL

1. Introduction. Let F denote the free group with n generators and let F^{c} be the c th member of the lower central series ${ }^{2}$ of F. Witt ${ }^{3}$ has shown that $Q^{c}=F^{c} / F^{c+1}$ is a free abelian group with $\psi_{c}(n)$ $=(1 / c) \sum \mu(c / d) n^{d}$ generators (the summation is over all divisors d of c and μ is the Möbius μ-function).

The set of k th powers in F generates a normal subgroup H_{k}. Let $F_{k}=F / H_{k}$ and $G_{k, c}=F_{k} / F_{k}^{c+1}$. We shall call F_{k} the free k-group and $G_{k, c}$ the free k-group of class c. It is a consequence of Witt's result that F_{k}^{c} / F_{k}^{c+1}, the central of $G_{k, c}$, is abelian and has at most $\psi_{c}(n)$ generators. In this note we show that if p is a prime greater than c, and $q=p^{\alpha}$, then the central of $G_{q, c}$ is of order q^{N} where $N=\psi_{c}(n)$. If the prime divisors of k are all greater than c, an analogous result holds for the central of $G_{k, c}$ as a consequence of Burnside's theorem that a nilpotent group is the direct product of its Sylow subgroups.

Let M_{c} denote the space of tensors of rank c over the $G F[p]$. A homomorphic mapping of M_{c} upon the central of $G_{p, c}$ is set up and enables one to apply the theory of decompositions of tensor space under the full linear group $\bmod p$, to determine all characteristic subgroups of $G_{p, c}$ which lie in its central. This theory is applied to determine all the characteristic subgroups of $G_{p, c}$ for $c<5$ and a multiplication table is constructed for $G_{p, 3}$.
2. Commutator calculus. ${ }^{4}$ Let s_{1}, s_{2}, \cdots be operators in any group G and set $s_{12}=\left(s_{1}, s_{2}\right)=s_{1}^{-1} s_{2}^{-1} s_{1} s_{2}$ and $s_{12} \ldots k=\left(s_{12} \ldots k_{k-1}, s_{k}\right) . s_{12} \ldots k$ is called a simple commutator of weight k in the components s_{1}, \cdots, s_{k}. The group G^{k} generated by the simple commutators of weight k for all choices of s_{1}, \cdots, s_{k} in G is called the k th member of the lower central series of G. If $s \in G^{k}$ but $s \notin G^{k+1}$, then s is said to have weight k in G.

For all s_{1}, s_{2}, s_{3} in G we have

$$
\begin{equation*}
\left(s_{1} s_{2}, s_{3}\right)=s_{13} s_{132} s_{23}, \quad\left(s_{1}, s_{2} s_{3}\right)=s_{13} s_{12} s_{123} \tag{1}
\end{equation*}
$$

Let the weight of s_{i} be α_{i} and set $\alpha=\alpha_{1}+\cdots+\alpha_{k}+1$. The following relations are then true:

[^0]
[^0]: ${ }^{1}$ Presented to the Society, April 13, 1940.
 ${ }^{2}$ For definition see $\S 2$ below or [4, p. 49].
 3 [7, p. 153].
 ${ }^{4}$ The relations in this section are either taken directly from Hall, Magnus, or Witt or are immediate consequences of their theorems. See [4, 6 and 7].

