ON THE FIRST CASE OF FERMAT'S LAST THEOREM

D. H. AND EMMA LEHMER

In 1909 Wieferich [1] proved his celebrated criterion for the first case of Fermat's last theorem, namely:

The equation

$$
\begin{equation*}
x^{p}+y^{p}=z^{p}, \quad x, y, z \text { prime to } p \tag{1}
\end{equation*}
$$

has no solutions unless

$$
\begin{equation*}
2^{p-1} \equiv 1\left(\bmod p^{2}\right) \tag{2}
\end{equation*}
$$

Since that time numerous other criteria of the form

$$
\begin{equation*}
m^{p-1} \equiv 1\left(\bmod p^{2}\right) \tag{3}
\end{equation*}
$$

have been proved by Mirimanoff [2] (for $m=3$), Vandiver [3] (for $m=5$), Frobenius [4], Pollaczek [5], Morishima [6], and Rosser [7] for all prime values of $m \leqq 41$.

Wieferich's criterion alone has been applied by Meissner [8] and Beeger [9] for $p<16,000$ and was found to be satisfied only for $p=1,093$ and 3,511 , both of which cases failed to satisfy Mirimanoff's criterion.

Until recently no effort has been made to combine these various criteria in a practical way. Mirimanoff observed, however, in 1910 that his criterion and that of Wieferich could be combined to state that equation (1) has no solutions for all primes p of the form $2^{\alpha} 3^{\beta} \pm 1$ or $\left|2^{\alpha} \pm 3^{\beta}\right|$.

In the presence of more criteria this statement can be extended thus:
We call a number an " A_{n} number" (after Western) if it is divisible by no prime exceeding the nth prime p_{n}. If the criterion (3) has been established for all $m \leqq p_{n}$, then equation (1) does not hold if p is the sum or difference of two A_{n} numbers [10]. Since all the numbers less than p_{n+1} are A_{n} numbers, we may state that equation (1) has no solution for any prime in a region where the A_{n} numbers are so dense that they do not differ by more than $2 p_{n+1}-1$. This method was used in 1938 by A. E. Western [11] to show that (1) is impossible for $16,000<p<100,000$.

A more powerful method of combining the criteria was suggested recently by Rosser [12], who observes that while the congruence

$$
\begin{equation*}
x^{p-1} \equiv 1\left(\bmod p^{2}\right) \tag{4}
\end{equation*}
$$

has only $(p-1) / 2$ solutions less than $p^{2} / 2$, every A_{n} number is a

