SOME THEOREMS ON CONTINUA¹

EDWIN W. MILLER

The following theorem, proved by A. Mullikin in her thesis,² has been used extensively in certain point set theoretic investigations.

THEOREM. If C is a continuum and F_1 and F_2 are closed, mutually exclusive and nonvacuous subsets of C, then there exists a component of $C - (F_1 + F_2)$ which has a limit point in F_1 and a limit point³ in F_2 .

In §1 we shall obtain a theorem (Theorem 1) which represents a strengthening of Mullikin's result. The theorem, in this stronger form, has numerous applications. We shall discuss some of these applications in §2 and §3.

1. A stronger form of Mullikin's theorem. We prove the following theorem:

THEOREM 1. Under the hypotheses of Mullikin's theorem, there exists a constituent⁴ of $C - (F_1 + F_2)$ which has a limit point in F_1 and a limit point in F_2 .

PROOF. Let $\{G_n\}$ and $\{H_n\}$ denote monotonic decreasing sequences of open sets which close down upon F_1 and F_2 respectively. We may suppose that G_1 and H_1 are so chosen that $\overline{G_1} \cdot \overline{H_1} = 0$. Now, by Mullikin's theorem, there is a connected subset of $C - C \cdot (\overline{G_n} + \overline{H_n})$ which has a limit point in $\overline{G_n}$ and a limit point in $\overline{H_n}$. The closure of such a connected set is a subcontinuum of C which "extends" from $\overline{G_n}$ to $\overline{H_n}$. If, then, we denote by Q_n the set of all points of $C - C \cdot (G_n + H_n)$ which lie on subcontinua of C which extend (in the above indicated sense) from $\overline{G_n}$ to $\overline{H_n}$, we have $Q_n \neq 0$.

¹ Presented to the Society, April 10, 1937, under the title On a theorem due to A. Mullikin.

² Certain theorems relating to plane connected point sets, Transactions of this Society, vol. 24 (1922), pp. 144–162.

⁸ In Mullikin's statement of this theorem, C is a bounded plane continuum. It is clear, however, that her proof applies if C is any continuum in a compact metric space. In the present paper, all point sets under consideration are understood to be embedded in a compact metric space, except when the contrary is expressly stated. If M is a point set and p is a point of M, then the maximal connected subset of M which contains p is called the component of M determined by p.

⁴ A set of points K is said to be strongly connected, or to be a semicontinuum, if every pair of points of K lies on some continuum contained in K. If M is a point set and p is a point of M, then the maximal strongly connected subset of M which contains p is called the constituent of M determined by p.