APPROXIMATION TO REAL IRRATIONALS BY CERTAIN CLASSES OF RATIONAL FRACTIONS¹

W. T. SCOTT

1. Introduction. Hurwitz proved that if ω is a real irrational number, then the inequality

(1)
$$|\omega - p/q| < k/q^2$$

is satisfied by infinitely many rational fractions p/q when $k \ge 1/5^{1/2}$, and further, that there exist irrationals everywhere dense on the real axis for which (1) is satisfied by only a finite number of fractions² when $k < 1/5^{1/2}$. He used simple continued fractions to get this result. The same result has since been obtained in two different ways by Ford.³

If o denotes an odd integer and e an even integer, then all irreducible fractions p/q are of three classes [o/e], [e/o], and [o/o]. It will be shown that

If $k \ge 1$, there are infinitely many fractions of each of the three classes satisfying (1), regardless of the value of the real irrational number ω .

If k < 1, there exist irrational numbers everywhere dense on the real axis for which (1) is satisfied by only a finite number of fractions of a given one of the three classes.

The proof, like Ford's first proof of Hurwitz' theorem, will depend to a large extent on geometric properties of elliptic modular transformations.

2. Proof of the first part of the theorem. For each fraction p/q construct (see Fig. 1), in the upper half-plane an S-circle, S(p/q; k) of radius k/q^2 and tangent to the real axis at z = p/q. Let L be a line in the upper half-plane perpendicular to the real axis at $z = \omega$. Then (1) is satisfied by p/q if and only if L cuts S(p/q; k).

The group of elliptic modular transformations is the set of all transformations of the form

(2)
$$z' = \frac{\alpha z + \beta}{\gamma z + \delta}, \qquad \alpha \delta - \beta \gamma = 1,$$

where α , β , γ , δ are integers. These conformal transformations carry

¹ Presented to the Society, February 24, 1940.

² A. Hurwitz, Mathematische Annalen, vol. 39 (1891), pp. 279-285.

⁸ L. R. Ford, Proceedings of the Edinburgh Mathematical Society, vol. 35 (1916),

pp. 59-65; American Mathematical Monthly, vol. 45 (1938), pp. 586-601.