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(where the superscript is reduced, modulo n^ if necessary) be a ho-
meomorphism agreeing with T on L and sending b{ into &*+1 (with 
the same convention on the superscripts). This defines T for every p 
of M. I t is evident that T(M) = M is a pointwise periodic homeo-
morphism. 

If we now define 
n{ 

Gi = X) hi, 
; - l 

we see that each Gi is an orbit under Tf and conditions (a) and (b) 
of the theorem are satisfied. The proof is thus complete. 
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In a logical calculus of m values, abbreviated by Lm, we may deal 
with functions of n variables. A particular function is defined in this 
calculus if we assign a constant value, which may be any arbitrary 
one of the m possible values in Lm, as the value of that function for 
a particular argument. I t is the purpose of this note to enumerate, 
among all functions of n variables in Lm : those which depend on all n 
variables in the argument; those which depend on just (» —1) of the 
variables in the argument, being independent of one of them ; and so 
on ; finally those which are completely independent of all the variables 
in the argument. 

Since each variable in the argument may assume values from 
1, • • • , m, independently, there are mn possible arguments, and since 
to each argument we may assign independently, as a functional value, 
any of the m values 1, • • • , m} there are in all mmTl possible functions 
of n variables. 

Let Vn be the total number of all functions of n variables in Lm. 
Then we have from the above 

(1) Vn = mm\ 

Let Unk be the number of functions of n variables which depend on 
exactly k of them. (It is this expression for which we are seeking an 
explicit evaluation.) Since k variables may be selected from n of them 
in just Cn,k ways, we have the relation: 

(2) Unk = Cn,kUkk* 


