(where the superscript is reduced, modulo n_i , if necessary) be a homeomorphism agreeing with T on L and sending b_i^j into b_i^{j+1} (with the same convention on the superscripts). This defines T for every p of M. It is evident that T(M) = M is a pointwise periodic homeomorphism.

If we now define

$$G_i = \sum_{j=1}^{n_i} b_i^j,$$

we see that each G_i is an orbit under T, and conditions (a) and (b) of the theorem are satisfied. The proof is thus complete.

University of Pennsylvania and University of Virginia

AN ENUMERATION OF LOGICAL FUNCTIONS

WILLIAM WERNICK

In a logical calculus of m values, abbreviated by L_m , we may deal with functions of n variables. A particular function is defined in this calculus if we assign a constant value, which may be any arbitrary one of the m possible values in L_m , as the value of that function for a particular argument. It is the purpose of this note to enumerate, among all functions of n variables in L_m : those which depend on all nvariables in the argument; those which depend on just (n-1) of the variables in the argument, being independent of one of them; and so on; finally those which are completely independent of all the variables in the argument.

Since each variable in the argument may assume values from $1, \dots, m$, independently, there are m^n possible arguments, and since to each argument we may assign independently, as a functional value, any of the *m* values $1, \dots, m$, there are in all m^{m^n} possible functions of *n* variables.

Let V_n be the total number of all functions of n variables in L_m . Then we have from the above

(1)
$$V_n = m^{m^n}.$$

Let U_{nk} be the number of functions of n variables which depend on exactly k of them. (It is this expression for which we are seeking an explicit evaluation.) Since k variables may be selected from n of them in just $C_{n,k}$ ways, we have the relation:

$$U_{nk} = C_{n,k} U_{kk}.$$

1939]