ON CONTINUED FRACTIONS REPRESENTING CONSTANTS*

H. S. WALL

1. Introduction. Let $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$ be an infinite sequence of points $x = (x_1, x_2, x_3, \cdots, x_m)$ in a space S, and let $\phi_1(x), \phi_2(x), \phi_3(x), \cdots, \phi_k(x)$ be single-valued real or complex functions over S. Then the functionally periodic continued fraction

$$1 + \frac{\phi_{1}(x^{(1)})}{1} + \frac{\phi_{2}(x^{(1)})}{1} + \cdots + \frac{\phi_{k}(x^{(1)})}{1} + \frac{\phi_{1}(x^{(2)})}{1} + \cdots + \frac{\phi_{k}(x^{(2)})}{1} + \cdots$$

$$+ \frac{\phi_{k}(x^{(2)})}{1} + \frac{\phi_{1}(x^{(3)})}{1} + \cdots$$

is a function $f(\xi)$ of the sequence ξ . By a neighborhood of a sequence $\xi\colon x^{(1)},\ x^{(2)},\ x^{(3)},\ \cdots$, we shall understand a set N_ξ of sequences subject to the following conditions: (i) ξ is in N_ξ ; (ii) if $\eta\colon y^{(1)},\ y^{(2)},\ y^{(3)},\ \cdots$ is in N_ξ , then $\eta_\nu\colon y^{(\nu+1)},\ y^{(\nu+2)},\ y^{(\nu+3)},\ \cdots$ and $\zeta_\nu\colon y^{(1)},\ y^{(2)},\ y^{(3)},\ \cdots,\ y^{(\nu)},\ x^{(\nu+1)},\ x^{(\nu+2)},\ x^{(\nu+3)},\ \cdots$ are in N_ξ for $\nu=1,\ 2,\ 3,\ \cdots$.

Let $A_n(\xi)$ and $B_n(\xi)$ be the numerator and denominator, respectively, of the *n*th convergent of $f(\xi)$ as computed by means of the usual recursion formulas. Put

$$L(\xi,t) = B_{k-1}(\xi)t^2 + \left[\phi_k(x^{(1)})B_{k-2}(\xi) - A_{k-1}(\xi)\right]t - \phi_k(x^{(1)})A_{k-2}(\xi).$$

Then our principal theorem is as follows:

THEOREM 1. Let there be a sequence $c: c^{(1)}, c^{(2)}, c^{(3)}, \cdots$, and a neighborhood N_c of c, and a number r having the following properties:

- (a) $f(\xi)$ converges uniformly over N_c ,
- (b) f(c) = r,
- (c) $L(\xi, r) = 0$ for every sequence ξ in N_c ,
- (d) $\phi_i(x^{(\nu)}) \neq 0$, $(\nu = 1, 2, 3, \dots; i = 1, 2, 3, \dots, k)$, for every sequence $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \dots$ in N_c .

When these conditions are fulfilled, $f(\xi) = r$ throughout N_c .

The proof of Theorem 1 is contained in §2; §3 contains a specialization and §4 an application of this theorem. In §5 continued fractions

^{*} Presented to the Society, April 9, 1937.