FUNCTIONS OF COPRIME DIVISORS OF INTEGERS

BY E. T. BELL

1. Unique Decompositions. If a set U of distinct positive integers 1, u_1, u_2, \cdots is such that*

(1)
$$(u_i, u_j) = 1, \quad i \neq j, \quad i, j = 1, 2, \cdots,$$

we call U a coprime set. If to U we adjoin all positive integral powers $u_1^{\alpha_1}$, $u_2^{\alpha_2}$, \cdots , $\alpha_1 > 0$, $\alpha_2 > 0$, \cdots of integers in U, we get the extended set E(U). If m is in E(U), we call m a U-integer.

THEOREM 1. If n > 1 is representable as a product of powers of integers > 1 in U, the representation is unique (up to permutations of the factors), say

(2)
$$n = u_1^{c_1} \cdots u_r^{c_r}, \quad u_i > 1, \quad c_i > 0, \quad i = 1, \cdots, r.$$

For, by the definition of U, the u_i in (2) are distinct, and by (1) a prime p such that $p \mid n$ is such that $p \mid u_i$ for precisely one j, $0 < j \le r$. We call (2) the U-decomposition of n.

Obviously there exist U's such that some n > 1 are not U-decomposable. From the fundamental theorem of arithmetic we have the following theorem:

THEOREM 2. If $P \equiv p_1, p_2, \cdots$ is the set of all positive primes, the only U such that every integer n > 1 is U-decomposable is $U \equiv P$.

We shall consider also another type of unique decomposition, valid for all n>1, which has the distinguishing property of *U*-decomposition as in (2), namely, every n>1 is uniquely a product of powers of coprime integers >1.

If the integer s>0 is divisible by the square of no prime, we call s simple. Let $S\equiv 1, s_1, s_2, \cdots$ be the set of all distinct simple integers; S includes P and is not a coprime set. Without confusion we may denote by E(S) the set obtained by adjoining to S all positive integral powers $s_1^{\alpha_1}, s_2^{\alpha_2}, \cdots, \alpha_1>0, \alpha_2>0, \cdots$, of simple integers.

Let $n = p_1^{a_1} \cdot \cdot \cdot \cdot p_r^{a_r}$ be the *P*-decomposition of *n*. If $a_1, \cdot \cdot \cdot \cdot , a_r$ are all different, this is by definition also the *S*-decomposition. If

^{*} In the customary notations, (m, n) is the G.C.D. of m, n, and $m \mid n$ signifies that m divides n arithmetically.