A NOTE ON THE CESÀRO METHOD OF SUMMATION*

BY J. H. CURTISS

1. Introduction. A sequence $\{S_n\}$, or a series $\sum U_n$ with partial sums S_n , is said to be summable by the Cesàro mean of order α , or summable (C, α) , to the sum s, if $\sigma_n^{\alpha} = S_n^{\alpha}/A_n^{\alpha} \rightarrow s$, \dagger where S_n^{α} and A_n^{α} are given by the following relations:

(1)
$$(1-x)^{-\alpha-1} = \sum A_n^{\alpha} x^n$$
; $A_n^{\alpha} = \frac{(\alpha+1)(\alpha+2)\cdots(\alpha+n)}{n!}$;

(2)
$$\sum S_n^{\alpha} x^n = (1 - x)^{-\alpha} \sum S_n x^n = (1 - x)^{-\alpha - 1} \sum U_n x^n;$$
$$S_n^{\alpha} = \sum_{\nu=0}^n A_{n-\nu}^{\alpha - 1} S_{\nu} = \sum_{\nu=0}^n A_{n-\nu}^{\alpha} U_{\nu};$$

and where α is any complex number other than a negative integer.‡ We shall restrict ourselves in this note to real orders of summability. It is known that if a sequence or series S is summable (C, α) , $\alpha > -1$, it is summable (C, α') , $\alpha' > \alpha$, to the same sum.§ If a sequence or series S is summable (C, α) for all $\alpha \ge \gamma$, then the lower limit of all such possible values of γ is called by Chapman || the *index of summability* of S.

It is sometimes easier to find the indices of summability and the sums of certain subsequences of a sequence S than to find the index and sum of S itself. As a trivial example, let $\{S_n\}$ be the sequence of partial sums of Leibniz's series $1-1+1-1+\cdots$. Then $S_{2k}=1$, $S_{2k+1}=0$, and it is easily seen that $\{S_{2k}\}$ is summable to the value 1 and $\{S_{2k+1}\}$ to the value 0 by the Cesàro mean of any order. It is the purpose of this note

^{*} Presented to the Society, September 9, 1937.

[†] Superscripts will not denote exponents when applied to capital letters and to the letter σ .

[‡] For a systematic account of the Cesàro method, see Kogbetliantz, Summation des Séries et Intégrales Divergentes par les Moyennes Arithmétiques et Typiques, Paris, 1931.

[§] Kogbetliantz, op. cit., p. 17.

^{||} Proceedings of the London Mathematical Society, (2), vol. 9 (1911), pp. 369-409; p. 378.