$$[(5), 9.] r \exists s. = .i (6)$$

$$[(4), (6)] p \exists q. = .r \exists s (7)$$

$$[11.03] (7) = (1)(2) (8)$$

$$[(7), (8)] (1)(2) (9)$$

$$[11.2] (1)(2) \exists (1) (10)$$

$$[12.17] (1)(2) \exists (2) (11)$$

$$[(9), (10)] (1)$$

The paradox stated above is a particular case of Theorem 10, and therefore requires no further proof.

(2).

NATIONAL WU-HAN UNIVERSITY, WUCHANG, CHINA

[(9), (11)]

THE BETTI NUMBERS OF CYCLIC PRODUCTS

BY R. J. WALKER

- 1. Introduction. In a recent paper† M. Richardson has discussed the symmetric product of a simplicial complex and has obtained explicit formulas for the Betti numbers of the two-and three-fold products. Acting on a suggestion of Lefschetz, we define a more general type of topological product and apply Richardson's methods to compute the Betti numbers of a certain one of these, the "cyclic" product.
- 2. Basis for m-Cycles of General Products. Let S be a topological space and G a group of permutations on the numbers $1, \dots, n$. The product of S with respect to G, G(S), is the set of all n-tuples (P_1, \dots, P_n) of points of S, where $(P_{i_1}, \dots, P_{i_n})$ is to be regarded as identical with (P_1, \dots, P_n) if and only if the permutation $(\frac{1}{i_1 \dots i_n})$ is an element of G. A neighborhood of (P_1, \dots, P_n) is the set of all points (Q_1, \dots, Q_n) for which Q_i belongs to a fixed neighborhood of P_i . It is not difficult to verify that the

[†] M. Richardson, On the homology characters of symmetric products, Duke Mathematical Journal, vol. 1 (1935), pp. 50-69. We shall refer to this paper as R.