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The paradox stated above is a particular case of Theorem 10, 
and therefore requires no further proof. 
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1. Introduction. In a recent paper f M. Richardson has dis­
cussed the symmetric product of a simplicial complex and has 
obtained explicit formulas for the Betti numbers of the two-
and three-fold products. Acting on a suggestion of Lefschetz, 
we define a more general type of topological product and apply 
Richardson's methods to compute the Betti numbers of a cer­
tain one of these, the "cyclic" product. 

2. Basis for m- Cycles of General Products. Let S be a topological 
space and G a group of permutations on the numbers 1, • • • , n. 
The product of S with respect to G, G(S), is the set of all ^-tuples 
(Pi, • • • , P») of points of S, where (Piu • • • , Pin) is to be re­
garded as identical with (Pi, • • • , Pn) if and only if the permu­
tation (ii,\'%) is an element of G. A neighborhood of (Pi,- • •, Pn) 
is the set of all points (Qi, • • • , Qn) for which Q» belongs to a 
fixed neighborhood of Pi. It is not difficult to verify that the 

t M. Richardson, On the homology characters of symmetric products, Duke 
Mathematical Journal, vol. 1 (1935), pp. 50-69. We shall refer to this paper 
a s R . 


