[October,

ON CERTAIN THEOREMS OF PÓLYA AND BERNSTEIN

BY NORMAN LEVINSON*

1. *Introduction*. As a generalization of the Fabry gap theorem Pólya[†] has proved the following result.

THEOREM 1. The function f(z) given by the power series

(1)
$$f(z) = \sum_{0}^{\infty} a_n z^{m_n}$$

with

(2)
$$\lim_{n\to\infty}\frac{n}{m_n}=D,$$

has[‡] at least one singularity on every arc on its circle of convergence whose intercepted angle exceeds $2\pi D$.

V. Bernstein§ has proved the following theorem.

THEOREM 2. Let $\phi(z)$ be analytic in some sector $|\operatorname{am} z| \leq \alpha$. Let

(3)
$$\overline{\lim_{r\to\infty}}\frac{\log |\phi(r)|}{r} = a.$$

Suppose there exists some b such that for any $\epsilon > 0$,

(4)
$$\phi(re^{i\theta}) = O(e^{(a \cos \theta + b | \sin \theta | + \epsilon)r}), \qquad (|\theta| \leq \alpha).$$

Let $\{\lambda_n\}$ be an increasing sequence of positive numbers such that

(5)
$$\lim_{n\to\infty}\frac{n}{\lambda_n}=D, \qquad \lambda_{n+1}-\lambda_n\geq d>0.$$

^{*} National Research Fellow.

[†] Pólya, Untersuchungen über Lücken und Singularitäten von Potenzreihen, Mathematische Zeitschrift, vol. 29 (1929).

[‡] The theorem with (2) replaced by the Pólya maximal density is obviously an immediate corollary of Theorem 1.

[§] Bernstein, Séries de Dirichlet, 1933, Chap. 9.