A GENERALIZED INVERSIVE ALGORITHM

BY D. H. LEHMER

In a previous note^{*} we considered an algorithm for constructing the *n*th member of any infinite class C of positive integers, an algorithm used by Brun[†] for the non-tentative calculation of the *n*th prime. In this note we give a generalization in two directions of the Brun algorithm. In the first place it is made applicable to any denumerable set of elements and secondly a parameter (m_0) is introduced which allows the algorithm to start from a more advantageous position than in the case of Brun, where one starts by saying that the *n*th prime is not less than *n*.

The algorithm may be presented in the following form:

Let $S: e_1, e_2, e_3, \cdots$, be a class of ordered elements.

Let $C:e_{a_1}, e_{a_2}, e_{a_3}, \dots, (a_i < a_{i-1})$, be any infinite subclass of S. For x an integer $\ddagger > 0$, we define $\theta(x)$ as the number of elements of C belonging to the set of the first x elements of S. For $x \leq 0$, we define $\theta(x) = 0$. Let m_0 and n be any positive integers. We then form the sequence

 $(1) m_1, m_2, m_3, \cdots,$

defined by

(2)

$$m_{1} = n - \theta(m_{0}),$$

$$m_{2} = n - \theta(m_{0} + m_{1}),$$

$$m_{3} = n - \theta(m_{0} + m_{1} + m_{2}),$$

$$\dots \dots \dots \dots \dots$$

$$m_{r} = n - \theta(s_{r}),$$

where we have written s_r for $m_0+m_1+\cdots+m_{r-1}$. We may then state the following theorem.

THEOREM. The terms of (1) do not differ in sign, nor do they increase in absolute value. There exists moreover an integer k such

^{*} This Bulletin, vol. 38 (1932), pp. 693-694.

[†] Kongelige Norske Videnskaps-selskabet, vol. 4, pp. 66-69.

[‡] If x is not an integer one could define $\theta(x) = \theta([x])$.