where the terms represented by \cdots are of degree less than $k-i+2$ in y. Thus (2) is established for $k+1$ and hence by induction for $k \ge n - 1$. Hence $p_1^{(k)}$, $p_2^{(k)}$, \cdots , $p_n^{(k)}$ are linearly independent for $k \geq n - 1$.

We have now proved that, for every *k,* every linear homogeneous polynomial of degree *k* which is a solution of *Of* = 0 has the form

$$
c_1p_1^{(k)} + c_2p_2^{(k)} + \cdots + c_np_n^{(k)},
$$

where the *c's* are arbitrary constants.

THE UNIVERSITY OF WISCONSIN

A CHARACTERIZATION OF NULL SYSTEMS IN PROJECTIVE SPACE

BY RICHARD BRAUER

1. *Introduction*. We consider the *n*-dimensional projective space S_n defined analytically by means of any abstract field F . The points P of S_n are given by a set of $n+1$ elements x_i of *F, P* = (x_0, x_1, \dots, x_n) , (not all $x_i = 0$), with the convention that proportional sets define the same point. The points *P* whose coordinates satisfy a linear homogeneous equation $u^{(0)}x_0 + u^{(1)}x_1 + \cdots + u^{(n)}x_n = 0$, (not all $u^{(i)} = 0$), form a hyperplane $\epsilon = (u^{(0)}, u^{(1)}, \dots, u^{(n)})$. There is no difficulty in defining such notions as those of straight lines, projections, and cross ratios, and discussing the elementary properties.

Let M be a non-singular skew-symmetric bilinear form with coefficients a_{ik} in F ,

$$
M = \sum_{i,k=0}^{n} a_{ik} y_i x_k, \qquad a_{ik} = - a_{ki}, \qquad \det (a_{ik}) \neq 0.
$$

For every point $P = (x_0, x_1, \dots, x_n)$ the equation $M = 0$ is the equation of a hyperplane ϵ in the coordinates (y_0, y_1, \dots, y_n) of a variable point of ϵ . We obtain in this manner a one-to-one correspondence between the points $P = (x_0, x_1, \dots, x_n)$ and hyperplanes $\epsilon = (u^{(0)}, u^{(1)}, \cdots, u^{(n)})$ of S_n which is called a null system. The relation between corresponding values of the $u^{(i)}$ and x_i is given by