ON CERTAIN HIGHER CONGRUENCES*

BY LEONARD CARLITZ

1. Introduction. This note is concerned with the higher congruence

(1)
$$\prod_{\deg G < m} (t - G) \equiv A \pmod{P}.$$

Here A, P, G denote polynomials in an indeterminate x with coefficients in a Galois field $GF(p^n)$ of order p^n . The product in the left member extends over all G of degree less than some fixed m; the modulus P is assumed irreducible of degree k. As will appear below, we may without loss assume k > m.

The congruence (1) has either no solution at all, or else has p^{nm} distinct solutions; if t is any solution, then the general solution is furnished by t+G, where deg G < m. Define σ_i by means of

$$(u + x)(u + x^{p^n}) \cdot \cdot \cdot (u + x^{p^{n(m-2)}})$$

= $\sigma_0 u^{m-1} + \sigma_1 u^{m-2} + \cdot \cdot \cdot + \sigma_{m-1}$.

Put

$$P = x^{k} + c_{1}x^{k-1} + \cdots + c_{k},$$

$$P' = kx^{k-1} + (k-1)c_{1}x^{k-2} + \cdots + c_{k-1},$$

$$F_{m-1} = (x^{p^{n(m-1)}} - x)(x^{p^{n(m-2)}} - x^{p^{n}}) \cdot \cdots (x^{p^{n}} - x^{p^{n(m-2)}}).$$

Then we prove the criterion: The congruence (1) is solvable if and only if each product $(\sigma_i/(F_{m-1})^{p^n})AP'$, $(j=0, \dots, m-1)$, is congruent (mod P) to a polynomial of degree < k-1.

2. Some Properties of $\psi_m(t)$. We denote by $\psi_m(t)$ the product appearing in the left member of (1). Also, we let

$$F_m = \prod_{i=0}^{m-1} (x^{p^{nm}} - x^{p^{ni}}), \quad L_m = \prod_{i=0}^{m-1} (x^{p^{n(m-i)}} - x), \quad F_0 = L_0 = 1.$$

Then†

^{*} Presented to the Society, September 10, 1935.

[†] L. Carlitz, Duke Mathematical Journal, vol. 1 (1935), p. 141.